아침 일어나니 -22도!!!
점심때나 되니 -11도
영하 20도를 넘나드니 영하10도는 따스한 착각마저 드네 ㅋㅋ
'개소리 왈왈 > 육아관련 주저리' 카테고리의 다른 글
| UHD 프로그램이 별로 없네 (0) | 2021.01.17 |
|---|---|
| 1인 사우나를 샀다 그리고 핸드폰을 빼앗겼다 (0) | 2021.01.15 |
| 오늘 최고기온 -10도 (4) | 2021.01.07 |
| 새가 졸리면 하는 행동? (0) | 2021.01.02 |
| 2021년 새해! (0) | 2021.01.01 |
아침 일어나니 -22도!!!
점심때나 되니 -11도
영하 20도를 넘나드니 영하10도는 따스한 착각마저 드네 ㅋㅋ
| UHD 프로그램이 별로 없네 (0) | 2021.01.17 |
|---|---|
| 1인 사우나를 샀다 그리고 핸드폰을 빼앗겼다 (0) | 2021.01.15 |
| 오늘 최고기온 -10도 (4) | 2021.01.07 |
| 새가 졸리면 하는 행동? (0) | 2021.01.02 |
| 2021년 새해! (0) | 2021.01.01 |
100시간은 족히 한듯
아무튼 그 와중에 제노블레이드 크로니클스2 살려고 기웃대고 있고
DLC라고 해야하나? "이어지는 미래"도 해야하는데
시작해보니 60렙부터 시작하는군 ㅋ
| 제노블레이드 공략 (0) | 2021.03.28 |
|---|---|
| 닌텐도 스위치 왼쪽 조이스틱 또 고장 (0) | 2021.01.31 |
| 조이콘 조이스틱 부품 분해 (0) | 2020.12.14 |
| 조이콘 수리 (4) | 2020.12.12 |
| 닌텐도 스위치 보호필름 교체 그리고 조이콘 조이스틱 수리 (0) | 2020.12.12 |
위는 오리지널 darknet을 아무런 옵션없이 라즈베리에서 빌드한 결과
$ ldd darknet
linux-vdso.so.1 (0x7efe1000)
/usr/lib/arm-linux-gnueabihf/libarmmem-${PLATFORM}.so => /usr/lib/arm-linux-gnueabihf/libarmmem-v7l.so (0x76f54000)
libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76eb6000)
libpthread.so.0 => /lib/arm-linux-gnueabihf/libpthread.so.0 (0x76e8c000)
libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76d3e000)
/lib/ld-linux-armhf.so.3 (0x76f69000)
아래는 darknet AlexeyAB 버전을 neon과 openmp 설정해서 빌드한 결과
$ ldd darknet
linux-vdso.so.1 (0x7eefc000)
/usr/lib/arm-linux-gnueabihf/libarmmem-${PLATFORM}.so => /usr/lib/arm-linux-gnueabihf/libarmmem-v7l.so (0x76f79000)
libgomp.so.1 => /lib/arm-linux-gnueabihf/libgomp.so.1 (0x76f25000)
libstdc++.so.6 => /lib/arm-linux-gnueabihf/libstdc++.so.6 (0x76dde000)
libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76d5c000)
libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0x76d2f000)
libpthread.so.0 => /lib/arm-linux-gnueabihf/libpthread.so.0 (0x76d05000)
libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76bb7000)
libdl.so.2 => /lib/arm-linux-gnueabihf/libdl.so.2 (0x76ba4000)
/lib/ld-linux-armhf.so.3 (0x76f8e000)
+
cpu only = 30.13sec
$ ./tiny.sh
GPU isn't used
OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BF
1 max 2x 2/ 2 416 x 416 x 16 -> 208 x 208 x 16 0.003 BF
2 conv 32 3 x 3/ 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BF
3 max 2x 2/ 2 208 x 208 x 32 -> 104 x 104 x 32 0.001 BF
4 conv 64 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BF
5 max 2x 2/ 2 104 x 104 x 64 -> 52 x 52 x 64 0.001 BF
6 conv 128 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BF
7 max 2x 2/ 2 52 x 52 x 128 -> 26 x 26 x 128 0.000 BF
8 conv 256 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BF
9 max 2x 2/ 2 26 x 26 x 256 -> 13 x 13 x 256 0.000 BF
10 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
11 max 2x 2/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
13 conv 256 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BF
14 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
15 conv 255 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 255 0.044 BF
16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
17 route 13 -> 13 x 13 x 256
18 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8 -> 26 x 26 x 384
21 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
22 conv 255 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 255 0.088 BF
23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
Detection layer: 16 - type = 28
Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 30133.750000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead
neon = 10.718 sec
$ ./tiny.sh
GPU isn't used
OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BF
1 max 2x 2/ 2 416 x 416 x 16 -> 208 x 208 x 16 0.003 BF
2 conv 32 3 x 3/ 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BF
3 max 2x 2/ 2 208 x 208 x 32 -> 104 x 104 x 32 0.001 BF
4 conv 64 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BF
5 max 2x 2/ 2 104 x 104 x 64 -> 52 x 52 x 64 0.001 BF
6 conv 128 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BF
7 max 2x 2/ 2 52 x 52 x 128 -> 26 x 26 x 128 0.000 BF
8 conv 256 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BF
9 max 2x 2/ 2 26 x 26 x 256 -> 13 x 13 x 256 0.000 BF
10 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
11 max 2x 2/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
13 conv 256 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BF
14 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
15 conv 255 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 255 0.044 BF
16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
17 route 13 -> 13 x 13 x 256
18 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8 -> 26 x 26 x 384
21 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
22 conv 255 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 255 0.088 BF
23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
Detection layer: 16 - type = 28
Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 10718.416000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead
openmp = 8.686 sec
$ ./tiny.sh
GPU isn't used
OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BF
1 max 2x 2/ 2 416 x 416 x 16 -> 208 x 208 x 16 0.003 BF
2 conv 32 3 x 3/ 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BF
3 max 2x 2/ 2 208 x 208 x 32 -> 104 x 104 x 32 0.001 BF
4 conv 64 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BF
5 max 2x 2/ 2 104 x 104 x 64 -> 52 x 52 x 64 0.001 BF
6 conv 128 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BF
7 max 2x 2/ 2 52 x 52 x 128 -> 26 x 26 x 128 0.000 BF
8 conv 256 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BF
9 max 2x 2/ 2 26 x 26 x 256 -> 13 x 13 x 256 0.000 BF
10 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
11 max 2x 2/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
13 conv 256 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BF
14 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
15 conv 255 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 255 0.044 BF
16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
17 route 13 -> 13 x 13 x 256
18 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8 -> 26 x 26 x 384
21 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
22 conv 255 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 255 0.088 BF
23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
Detection layer: 16 - type = 28
Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 8686.237000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead
openmp + neon = 4.449 sec
$ ./tiny.sh
GPU isn't used
OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 16 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 16 0.150 BF
1 max 2x 2/ 2 416 x 416 x 16 -> 208 x 208 x 16 0.003 BF
2 conv 32 3 x 3/ 1 208 x 208 x 16 -> 208 x 208 x 32 0.399 BF
3 max 2x 2/ 2 208 x 208 x 32 -> 104 x 104 x 32 0.001 BF
4 conv 64 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 64 0.399 BF
5 max 2x 2/ 2 104 x 104 x 64 -> 52 x 52 x 64 0.001 BF
6 conv 128 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 128 0.399 BF
7 max 2x 2/ 2 52 x 52 x 128 -> 26 x 26 x 128 0.000 BF
8 conv 256 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 256 0.399 BF
9 max 2x 2/ 2 26 x 26 x 256 -> 13 x 13 x 256 0.000 BF
10 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
11 max 2x 2/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.000 BF
12 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
13 conv 256 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 256 0.089 BF
14 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF
15 conv 255 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 255 0.044 BF
16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
17 route 13 -> 13 x 13 x 256
18 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF
19 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128
20 route 19 8 -> 26 x 26 x 384
21 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF
22 conv 255 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 255 0.088 BF
23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
Detection layer: 16 - type = 28
Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 4449.888000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead
| CNN과 RNN (0) | 2021.01.09 |
|---|---|
| darknet과 darknetab (0) | 2021.01.09 |
| darknet on rpi3 (0) | 2021.01.08 |
| yolo lite (0) | 2021.01.08 |
| SSDnnn (Single Shot Detector) (0) | 2021.01.08 |
아래의 옵션을 추천해서 적용해 보았는데
| -mthumb -O3 -march=armv7-a -mcpu=cortex-a9 -mtune=cortex-a9 -mfpu=neon -mvectorize-with-neon-quad -mfloat-abi=softfp |
[링크 : https://stackoverflow.com/questions/14962447/gcc-options-for-a-freescale-imx6q-arm-processor]
[링크 : https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html]
에러가 나서 mfloat-abi=softfp 에서 hard로 변경
| In file included from /usr/include/features.h:448, from /usr/include/arm-linux-gnueabihf/bits/libc-header-start.h:33, from /usr/include/stdlib.h:25, from include/darknet.h:12, from ./src/activations.h:3, from ./src/gemm.h:3, from ./src/gemm.c:1: /usr/include/arm-linux-gnueabihf/gnu/stubs.h:7:11: fatal error: gnu/stubs-soft.h: No such file or directory # include <gnu/stubs-soft.h> ^~~~~~~~~~~~~~~~~~ compilation terminated. |
[링크 : https://stackoverflow.com/questions/49139125/fatal-error-gnu-stubs-soft-h-no-such-file-or-directory]
아무튼 빌드는 되지만 아래와 같은 경고가 뜬다. march와 mcpu가 충돌난다라.. 어느걸 살려야 할까?
| cc1: warning: switch -mcpu=cortex-a9 conflicts with -march=armv7-a switch |
+
2021.01.12
| 중고 부품 지름 (0) | 2025.01.06 |
|---|---|
| arm-none-eabi는 -pthread 미지원 (0) | 2021.01.11 |
| orange pi r1+ (0) | 2021.01.08 |
| i.mx6 solo 비디오 성능 문제? (0) | 2020.10.19 |
| 간만에 부품 지름 (2) | 2020.03.04 |
원인 불명으로 BUS error나 Segmentation fault가 떠서 찾아보니
소스를 수정한 버전이 있다고 한다.
돌아는 가는데.... (이하 생략)
[링크 : https://j-remind.tistory.com/53]
[링크 : https://github.com/AlexeyAB/darknet]
설마 endian 문제?
| darknet과 darknetab (0) | 2021.01.09 |
|---|---|
| darknet openmp 빌드 (0) | 2021.01.08 |
| yolo lite (0) | 2021.01.08 |
| SSDnnn (Single Shot Detector) (0) | 2021.01.08 |
| CNN - YOLO (0) | 2021.01.07 |
YOLOv2-tiny 의 web implementation 이라는데 웹 implementation이 머지?
[링크 : https://reu2018dl.github.io/]
[링크 : https://github.com/reu2018DL/YOLO-LITE]
[링크 : https://arxiv.org/pdf/1811.05588.pdf]
+
MS COCO 2014 and PASCAL VOC 2007 + 2012
pascal voc(Visual Object Classes)
[링크 : http://host.robots.ox.ac.uk/pascal/VOC/]
[링크 : https://ndb796.tistory.com/500]
MS COCO
COCO랑은 다른가?
[링크 : https://arxiv.org/pdf/1405.0312.pdf]
[링크 : https://chacha95.github.io/2020-02-27-Object-Detection4/]
[링크 : https://cocodataset.org/#home]
AP - Average Precision
mAP (mean AP)
[링크 : https://mezzaninex.tistory.com/entry/AI-COCO-Dataset-mAPmean-Average-Precision]
| darknet openmp 빌드 (0) | 2021.01.08 |
|---|---|
| darknet on rpi3 (0) | 2021.01.08 |
| SSDnnn (Single Shot Detector) (0) | 2021.01.08 |
| CNN - YOLO (0) | 2021.01.07 |
| yolo BFLOPs (0) | 2020.10.21 |
SSD 도 모델이군..

[링크 : https://pjreddie.com/darknet/yolo/]
[링크 : https://junjiwon1031.github.io/2017/09/08/Single-Shot-Multibox-Detector.html]
| darknet on rpi3 (0) | 2021.01.08 |
|---|---|
| yolo lite (0) | 2021.01.08 |
| CNN - YOLO (0) | 2021.01.07 |
| yolo BFLOPs (0) | 2020.10.21 |
| yolo3 on ubuntu 18.04 (0) | 2020.10.20 |
segmentation fault는 주소 영역은 존재하는데 접근해서는 안되는 주소를 간거라고 한다면
bus error는 물리적 주소조차도 존재하지 않는 영역을 갈경우 발생하는건가?
| A Bus Errors triggers a process-level exception,notifying an operating system(OS) that a process is trying to access memory that the CPU cannot physically address which in UNIX translates into a “SIGBUS” signal, which if not caught, will terminate the current process. |
[링크 : https://learntechway.com/difference-between-segmentation-fault-and-bus-error/]
| 특정 버전의 파일로 링크걸어서 빌드하기 (0) | 2021.01.12 |
|---|---|
| libc static build 하기 (0) | 2021.01.12 |
| linux ip 와 gateway 설정 (0) | 2021.01.08 |
| udev (0) | 2021.01.05 |
| uio - userspace io (0) | 2021.01.05 |
잘 외워두고 써야겠군
ifconfig eth0 192.168.1.123 netmask 255.255.255.0 up
route add default gw 192.168.1.1
| libc static build 하기 (0) | 2021.01.12 |
|---|---|
| segmentation fault, bus error (0) | 2021.01.08 |
| udev (0) | 2021.01.05 |
| uio - userspace io (0) | 2021.01.05 |
| 파일이 존재하는데 실행하려고 하면 없다고 에러 뜰 경우 (0) | 2020.12.16 |
시리얼이 안된다고 해서 비싼 장난감으로 찍어보니
655ns .. 헐?
역으로 계산해보면 대충 1.6Mbps 나오는 것 같아서 찾아보는데
RK3328은 기본값이 1.5Mbps(1500000n8)로 셋팅된다고 하는데 동일 보드도 아니고
해당 보드 홈페이지 쥐잡듯이 뒤져도 기본값 이야기가 안나온다 -_-
아무튼 3.3V TTL은 맞고 115kbps가 아니라 1.5Mbps 라는게 문제인데
이거 되는 TTL-USB가 얼마나 있으려나?

[링크 : http://www.orangepi.org/Orange%20Pi%20R1%20Plus/]
[링크 : http://wiki.t-firefly.com/ROC-RK3328-CC/debug.html]
[링크 : https://forum.radxa.com/t/serial-debug-and-1500000-bps-issue/1390/7]
| arm-none-eabi는 -pthread 미지원 (0) | 2021.01.11 |
|---|---|
| i.mx6quad용 gcc 옵션 (0) | 2021.01.08 |
| i.mx6 solo 비디오 성능 문제? (0) | 2020.10.19 |
| 간만에 부품 지름 (2) | 2020.03.04 |
| solidrun CuBox-i2w (0) | 2019.03.10 |