--------------------------------------------------------------------------- ValueError                                Traceback (most recent call last) Cell In[28], line 1 ----> 1 history = model.fit(train_dataset,       2                     epochs=25,       3                     validation_data = test_dataset,       4                     validation_steps=1)
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:777, in Model.fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)     774 self._check_call_args('fit')     776 func = self._select_training_loop(x) --> 777 return func.fit(     778     self,     779     x=x,     780     y=y,     781     batch_size=batch_size,     782     epochs=epochs,     783     verbose=verbose,     784     callbacks=callbacks,     785     validation_split=validation_split,     786     validation_data=validation_data,     787     shuffle=shuffle,     788     class_weight=class_weight,     789     sample_weight=sample_weight,     790     initial_epoch=initial_epoch,     791     steps_per_epoch=steps_per_epoch,     792     validation_steps=validation_steps,     793     validation_freq=validation_freq,     794     max_queue_size=max_queue_size,     795     workers=workers,     796     use_multiprocessing=use_multiprocessing)
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_arrays_v1.py:616, in ArrayLikeTrainingLoop.fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)     595 def fit(self,     596         model,     597         x=None,    (...)     611         validation_freq=1,     612         **kwargs):     613   batch_size = model._validate_or_infer_batch_size(batch_size,     614                                                    steps_per_epoch, x) --> 616   x, y, sample_weights = model._standardize_user_data(     617       x,     618       y,     619       sample_weight=sample_weight,     620       class_weight=class_weight,     621       batch_size=batch_size,     622       check_steps=True,     623       steps_name='steps_per_epoch',     624       steps=steps_per_epoch,     625       validation_split=validation_split,     626       shuffle=shuffle)     628   if validation_data:     629     val_x, val_y, val_sample_weights = model._prepare_validation_data(     630         validation_data, batch_size, validation_steps)
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:2318, in Model._standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split, shuffle, extract_tensors_from_dataset)    2316 is_compile_called = False    2317 if not self._is_compiled and self.optimizer: -> 2318   self._compile_from_inputs(all_inputs, y_input, x, y)    2319   is_compile_called = True    2321 # In graph mode, if we had just set inputs and targets as symbolic tensors    2322 # by invoking build and compile on the model respectively, we do not have to    2323 # feed anything to the model. Model already has input and target data as    (...)    2327     2328 # self.run_eagerly is not free to compute, so we want to reuse the value.
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:2568, in Model._compile_from_inputs(self, all_inputs, target, orig_inputs, orig_target)    2565   else:    2566     target_tensors = None -> 2568 self.compile(    2569     optimizer=self.optimizer,    2570     loss=self.loss,    2571     metrics=self._compile_metrics,    2572     weighted_metrics=self._compile_weighted_metrics,    2573     loss_weights=self.loss_weights,    2574     target_tensors=target_tensors,    2575     sample_weight_mode=self.sample_weight_mode,    2576     run_eagerly=self.run_eagerly,    2577     experimental_run_tf_function=self._experimental_run_tf_function)
  File ~/.local/lib/python3.10/site-packages/tensorflow/python/training/tracking/base.py:629, in no_automatic_dependency_tracking.<locals>._method_wrapper(self, *args, **kwargs)     627 self._self_setattr_tracking = False  # pylint: disable=protected-access     628 try: --> 629   result = method(self, *args, **kwargs)     630 finally:     631   self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:443, in Model.compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, distribute, **kwargs)     439 training_utils_v1.prepare_sample_weight_modes(     440     self._training_endpoints, sample_weight_mode)     442 # Creates the model loss and weighted metrics sub-graphs. --> 443 self._compile_weights_loss_and_weighted_metrics()     445 # Functions for train, test and predict will     446 # be compiled lazily when required.     447 # This saves time when the user is not using all functions.     448 self.train_function = None
  File ~/.local/lib/python3.10/site-packages/tensorflow/python/training/tracking/base.py:629, in no_automatic_dependency_tracking.<locals>._method_wrapper(self, *args, **kwargs)     627 self._self_setattr_tracking = False  # pylint: disable=protected-access     628 try: --> 629   result = method(self, *args, **kwargs)     630 finally:     631   self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:1537, in Model._compile_weights_loss_and_weighted_metrics(self, sample_weights)    1524 self._handle_metrics(    1525     self.outputs,    1526     targets=self._targets,    (...)    1529     masks=masks,    1530     return_weighted_metrics=True)    1532 # Compute total loss.    1533 # Used to keep track of the total loss value (stateless).    1534 # eg., total_loss = loss_weight_1 * output_1_loss_fn(...) +    1535 #                   loss_weight_2 * output_2_loss_fn(...) +    1536 #                   layer losses. -> 1537 self.total_loss = self._prepare_total_loss(masks)
  File ~/.local/lib/python3.10/site-packages/keras/engine/training_v1.py:1597, in Model._prepare_total_loss(self, masks)    1594     sample_weight *= mask    1596 if hasattr(loss_fn, 'reduction'): -> 1597   per_sample_losses = loss_fn.call(y_true, y_pred)    1598   weighted_losses = losses_utils.compute_weighted_loss(    1599       per_sample_losses,    1600       sample_weight=sample_weight,    1601       reduction=losses_utils.ReductionV2.NONE)    1602   loss_reduction = loss_fn.reduction
  File ~/.local/lib/python3.10/site-packages/keras/losses.py:245, in LossFunctionWrapper.call(self, y_true, y_pred)     242   y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true)     244 ag_fn = tf.__internal__.autograph.tf_convert(self.fn, tf.__internal__.autograph.control_status_ctx()) --> 245 return ag_fn(y_true, y_pred, **self._fn_kwargs)
  File ~/.local/lib/python3.10/site-packages/tensorflow/python/autograph/impl/api.py:692, in convert.<locals>.decorator.<locals>.wrapper(*args, **kwargs)     690 except Exception as e:  # pylint:disable=broad-except     691   if hasattr(e, 'ag_error_metadata'): --> 692     raise e.ag_error_metadata.to_exception(e)     693   else:     694     raise
  ValueError: in user code:
      File "/tmp/ipykernel_49162/810674056.py", line 8, in Loss  *         loss += confidenceLoss(y[:,:,:-4],tf.cast(gt[:,:,0],tf.int32))     File "/tmp/ipykernel_49162/2037607510.py", line 2, in confidenceLoss  *         unweighted_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(label, y)
      ValueError: Only call sparse_softmax_cross_entropy_with_logits with named arguments (labels=..., logits=..., ...). Received unnamed argument: Tensor("loss/output_1_loss/Cast:0", shape=(None, None), dtype=int32) |