설치 부터가 드럽게 친절하지 않네

일단 openVINO가 intel 사이트에 통합된게 아니라

web 버전으로 받아 보니 rpm이 잔뜩 있어서 아닌것 같고 apt로 받으려고 가니 이상한 소리만 하고 있다.

 

 

openVINO 랑 참조해서 아래의 명령어들을 이용해서 설치하면 되긴한데

(다음글에서 개고생한걸 생각하면 openvino 2021이 아니라 약간 구버전을 쓰면

python 버전과 tensorflow 버전 문제로 고생을 덜하지 않았을까 하는 생각이 들긴한데

2020 버전에 대한 gpg를 찾지 못하겠다)

 

$ wget "https://apt.repos.intel.com/openvino/2021/GPG-PUB-KEY-INTEL-OPENVINO-2021"
$ sudo apt-key add GPG-PUB-KEY-INTEL-OPENVINO-2021
$ echo "deb https://apt.repos.intel.com/openvino/2021 all main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2021.list
deb https://apt.repos.intel.com/openvino/2021 all main
$ sudo apt-get update
$ sudo apt-cache search intel-openvino-dev-ubuntu18
intel-openvino-dev-ubuntu18-2021.1.110 - Intel® Deep Learning Deployment Toolkit 2021.1 for Linux*
$ sudo apt-get install intel-openvino-dev-ubuntu18-2021.1.110
$ cd /opt/intel/openvino_2021

 

[링크 : https://docs.openvinotoolkit.org/latest/openvino_docs_install_guides_installing_openvino_apt.html]

 

[링크: https://software.intel.com/content/www/us/en/develop/articles/get-started-with-neural-compute-stick.html]

[링크 : https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html...]

 

+

한번 해봤는데 GPG 키는 동일하게 나온다. 그 아래의 openvino/2021 all main 대신 2020으로 해봐야 하나 귀찮아..

[링크 : https://apt.repos.intel.com/openvino/2020/GPG-PUB-KEY-INTEL-OPENVINO-2020]

[링크 : https://apt.repos.intel.com/openvino/2021/GPG-PUB-KEY-INTEL-OPENVINO-2021]

'프로그램 사용 > intel ncs2' 카테고리의 다른 글

movidius MyriadX * 2  (1) 2025.01.08
innodisk egpa-i201-c1 Movidius Myriad X  (0) 2025.01.06
openvino myriad  (0) 2025.01.04
intel NCS2 ubuntu 설치?  (0) 2020.10.21
intel Movidius NCS / VPU  (0) 2020.10.21
Posted by 구차니

yolo 검색하다가 rpi에서 yolo-tiny로 프레임이 잘나온다고 했는데

다시보니 yolo-tiny가 문제가 아니라 NCU가 핵심인 듯 -_-

[링크 : https://www.pyimagesearch.com/...-tiny-yolo-object-detection-on-the-raspberry-pi-and-movidius-ncs/]

 

Intel® Movidius™ Neural Compute Stick (NCS)

[링크 : https://movidius.github.io/ncsdk/ncs.html]

 

Intel® Movidius™ Vision Processing Units (VPUs)

[링크 : https://www.intel.com/content/www/us/en/products/processors/movidius-vpu.html]

[링크 : https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html]

'프로그램 사용 > intel ncs2' 카테고리의 다른 글

movidius MyriadX * 2  (1) 2025.01.08
innodisk egpa-i201-c1 Movidius Myriad X  (0) 2025.01.06
openvino myriad  (0) 2025.01.04
intel NCS2 ubuntu 설치?  (0) 2020.10.21
intel ncs2 설치  (0) 2020.10.21
Posted by 구차니
프로그램 사용/gcc2020. 10. 21. 12:47

gcc 4.4 이후 버전 사용가능

#pragma GCC push_options
#pragma GCC optimize ("O0")

your code

#pragma GCC pop_options

 

void __attribute__((optimize("O0"))) foo(unsigned char data) {
    // unmodifiable compiler code
}

[링크 : https://stackoverflow.com/questions/2219829/how-to-prevent-gcc-optimizing-some-statements-in-c]

'프로그램 사용 > gcc' 카테고리의 다른 글

g++ 은 정적 빌드가 안되나?  (0) 2021.01.19
gcc offloading support  (0) 2020.11.24
gcc의 linker 옵션 은 가장 끝에  (0) 2019.06.21
c large file support  (0) 2019.06.21
gcc5 atoi / stoi  (0) 2019.06.14
Posted by 구차니

BFLOPs (Billion FLOPs)

[링크 : https://arxiv.org/pdf/1910.03159.pdf]

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
CNN - YOLO  (0) 2021.01.07
yolo3 on ubuntu 18.04  (0) 2020.10.20
yolo on rpi?  (0) 2020.10.06
Posted by 구차니
Linux API/linux2020. 10. 21. 11:50

 

 

[링크 : https://stackoverflow.com/questions/15308770/read-usb-bulk-message-on-linux]

Posted by 구차니

weight 받는데 한참 걸린다(100kbps 정도 뜨는 느낌...)

weight를 받지 않고 실행하면 한참 먼가 계산하고 나서 weight가 없다고 에러나면서 종료된다.

 

git clone https://github.com/pjreddie/darknet
cd darknet
make
wget https://pjreddie.com/media/files/yolov3.weights
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

 

결과물은 prediction.jpg로 박스쳐져서 나온다.(옵션을 주면 상자 위치로 나오려나?)

 

 

아무튼 weight 를 받아서 돌려보는데 예상외로 무겁다?

개인 노트북이 i5-2520m 이긴한데 최대 클럭 + 부스트 하도록 설정하고 했는데도 30초 가량 걸린다.

$ time ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 conv     64  3 x 3 / 2   608 x 608 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    2 conv     32  1 x 1 / 1   304 x 304 x  64   ->   304 x 304 x  32  0.379 BFLOPs
    3 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    4 res    1                 304 x 304 x  64   ->   304 x 304 x  64
    5 conv    128  3 x 3 / 2   304 x 304 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    6 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
    7 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    8 res    5                 152 x 152 x 128   ->   152 x 152 x 128
    9 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
   10 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
   11 res    8                 152 x 152 x 128   ->   152 x 152 x 128
   12 conv    256  3 x 3 / 2   152 x 152 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   13 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   14 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   15 res   12                  76 x  76 x 256   ->    76 x  76 x 256
   16 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   17 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   18 res   15                  76 x  76 x 256   ->    76 x  76 x 256
   19 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   20 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   21 res   18                  76 x  76 x 256   ->    76 x  76 x 256
   22 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   23 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   24 res   21                  76 x  76 x 256   ->    76 x  76 x 256
   25 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   26 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   27 res   24                  76 x  76 x 256   ->    76 x  76 x 256
   28 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   29 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   30 res   27                  76 x  76 x 256   ->    76 x  76 x 256
   31 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   32 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   33 res   30                  76 x  76 x 256   ->    76 x  76 x 256
   34 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   35 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   36 res   33                  76 x  76 x 256   ->    76 x  76 x 256
   37 conv    512  3 x 3 / 2    76 x  76 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   38 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   39 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   40 res   37                  38 x  38 x 512   ->    38 x  38 x 512
   41 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   42 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   43 res   40                  38 x  38 x 512   ->    38 x  38 x 512
   44 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   45 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   46 res   43                  38 x  38 x 512   ->    38 x  38 x 512
   47 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   48 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   49 res   46                  38 x  38 x 512   ->    38 x  38 x 512
   50 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   51 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   52 res   49                  38 x  38 x 512   ->    38 x  38 x 512
   53 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   54 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   55 res   52                  38 x  38 x 512   ->    38 x  38 x 512
   56 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   57 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   58 res   55                  38 x  38 x 512   ->    38 x  38 x 512
   59 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   60 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   61 res   58                  38 x  38 x 512   ->    38 x  38 x 512
   62 conv   1024  3 x 3 / 2    38 x  38 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   63 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   64 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   65 res   62                  19 x  19 x1024   ->    19 x  19 x1024
   66 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   67 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   68 res   65                  19 x  19 x1024   ->    19 x  19 x1024
   69 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   70 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   71 res   68                  19 x  19 x1024   ->    19 x  19 x1024
   72 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   73 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   74 res   71                  19 x  19 x1024   ->    19 x  19 x1024
   75 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   76 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   77 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   78 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   79 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   80 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   81 conv    255  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 255  0.189 BFLOPs
   82 yolo
   83 route  79
   84 conv    256  1 x 1 / 1    19 x  19 x 512   ->    19 x  19 x 256  0.095 BFLOPs
   85 upsample            2x    19 x  19 x 256   ->    38 x  38 x 256
   86 route  85 61
   87 conv    256  1 x 1 / 1    38 x  38 x 768   ->    38 x  38 x 256  0.568 BFLOPs
   88 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   89 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   90 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   91 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   92 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   93 conv    255  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 255  0.377 BFLOPs
   94 yolo
   95 route  91
   96 conv    128  1 x 1 / 1    38 x  38 x 256   ->    38 x  38 x 128  0.095 BFLOPs
   97 upsample            2x    38 x  38 x 128   ->    76 x  76 x 128
   98 route  97 36
   99 conv    128  1 x 1 / 1    76 x  76 x 384   ->    76 x  76 x 128  0.568 BFLOPs
  100 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  101 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
  102 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  103 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
  104 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
  105 conv    255  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 255  0.754 BFLOPs
  106 yolo
Loading weights from yolov3.weights...Done!
data/dog.jpg: Predicted in 29.416936 seconds.
dog: 100%
truck: 92%
bicycle: 99%

real	0m33.904s
user	0m32.813s
sys	0m0.600s

 

tiny가 표준에 비해서 1/30 정도로 가볍긴 하지만, 그렇다고 해서 i5-2520m에서 이정도인데

임베디드 보드에서 실시간은 많이 무리일지도?

$ time ./darknet detect cfg/yolov3-tiny.cfg yolov3.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   13 conv    256  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 256  0.089 BFLOPs
   14 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   15 conv    255  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 255  0.044 BFLOPs
   16 yolo
   17 route  13
   18 conv    128  1 x 1 / 1    13 x  13 x 256   ->    13 x  13 x 128  0.011 BFLOPs
   19 upsample            2x    13 x  13 x 128   ->    26 x  26 x 128
   20 route  19 8
   21 conv    256  3 x 3 / 1    26 x  26 x 384   ->    26 x  26 x 256  1.196 BFLOPs
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from yolov3.weights...Done!
data/dog.jpg: Predicted in 1.197222 seconds.

real	0m1.811s
user	0m1.750s
sys	0m0.060s

 

결과가 안나와서 다른 사람들에게 물어보니 tiny용 weight가 따로 있다고 -_ㅠ

wget https://pjreddie.com/media/files/yolov3-tiny.weights
./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg

 

인식은 되는데 시간이 달라지진 않네..

$ time ./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   13 conv    256  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 256  0.089 BFLOPs
   14 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   15 conv    255  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 255  0.044 BFLOPs
   16 yolo
   17 route  13
   18 conv    128  1 x 1 / 1    13 x  13 x 256   ->    13 x  13 x 128  0.011 BFLOPs
   19 upsample            2x    13 x  13 x 128   ->    26 x  26 x 128
   20 route  19 8
   21 conv    256  3 x 3 / 1    26 x  26 x 384   ->    26 x  26 x 256  1.196 BFLOPs
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from yolov3-tiny.weights...Done!
data/dog.jpg: Predicted in 1.208611 seconds.
dog: 57%
car: 52%
truck: 56%
car: 62%
bicycle: 59%

real	0m1.822s
user	0m1.770s
sys	0m0.052s

 

[링크 : https://pjreddie.com/darknet/yolo/]

 

[링크 : https://blog.insightdatascience.com/how-to-train-your-own-yolov3-detector-from-scratch-224d10e55de2?gi=87339b7b98d4]

 

+

2020.10.21

[링크 : https://github.com/guichristmann/edge-tpu-tiny-yolo] TPU로 가속은 가능한듯?

 

+

결과 파일 추가! tiny는 쓸 수 있을까?

 

yolov3 / kite.jpg

 

yolov3-tiny / kite.jpg

 

yolov3 / dog.jpg

 

yolov3-tiny / dog.jpg

 

 

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
CNN - YOLO  (0) 2021.01.07
yolo BFLOPs  (0) 2020.10.21
yolo on rpi?  (0) 2020.10.06
Posted by 구차니

구글 코랄 TPU USB를 한번 사용해 봄

일단은 설치된 python의 버전을 확인해야 하는데 버전에 맞지 않는 런타임을 설치할 경우

아래와 같이 not a supported wheel on this platform 이라는 에러가 발생한다.

$ pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl
tflite_runtime-2.1.0.post1-cp38-cp38-linux_x86_64.whl is not a supported wheel on this platform.
$ python3 --version
Python 3.6.9

[링크 : https://coral.ai/docs/accelerator/get-started/]

 

dmesg로 확인해보니.. 다음과 같이 나온다.

[  957.819504] usb 2-1.2: new high-speed USB device number 4 using ehci-pci
[  957.928960] usb 2-1.2: New USB device found, idVendor=1a6e, idProduct=089a, bcdDevice= 1.00
[  957.928968] usb 2-1.2: New USB device strings: Mfr=0, Product=0, SerialNumber=0

 

lsusb로는 아래와 같이

Bus 002 Device 004: ID 04f2:b242 Chicony Electronics Co., Ltd 
Bus 002 Device 009: ID 1a6e:089a Global Unichip Corp
Bus 002 Device 008: ID 04e8:6860 Samsung Electronics Co., Ltd Galaxy (MTP)
Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 004: ID 04b4:6560 Cypress Semiconductor Corp. CY7C65640 USB-2.0 "TetraHub"
Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

 

lshw로 확인해보면 아래와 같이 UNCLAIMED 라고 뜬다.

Global Unichip corp를 검색해보니 asic 설계 서비스 회사, Fabless 회사라고 나오네.

              *-usb
                   description: USB hub
                   product: Integrated Rate Matching Hub
                   vendor: Intel Corp.
                   physical id: 1
                   bus info: usb@2:1
                   version: 0.00
                   capabilities: usb-2.00
                   configuration: driver=hub slots=8 speed=480Mbit/s
                 *-usb:0 UNCLAIMED
                      description: Generic USB device
                      vendor: Global Unichip Corp.
                      physical id: 2
                      bus info: usb@2:1.2
                      version: 1.00
                      capabilities: usb-2.10
                      configuration: maxpower=498mA speed=480Mbit/s

 

아래는 할 것 다하고 USB 가속기를 설치하지 않았을 경우 발생하는 에러

장치를 발견하지 못했다고 뜨지 않고 Failed to load delegate from libedgetpu.so.1 이라고 뜬다.

$ python3 classify_image.py --model models/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite --labels models/inat_bird_labels.txt --input images/parrot.jpg
Traceback (most recent call last):
  File "/home/minimonk/.local/lib/python3.6/site-packages/tflite_runtime/interpreter.py", line 161, in load_delegate
    delegate = Delegate(library, options)
  File "/home/minimonk/.local/lib/python3.6/site-packages/tflite_runtime/interpreter.py", line 120, in __init__
    raise ValueError(capture.message)
ValueError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "classify_image.py", line 122, in <module>
    main()
  File "classify_image.py", line 99, in main
    interpreter = make_interpreter(args.model)
  File "classify_image.py", line 73, in make_interpreter
    {'device': device[0]} if device else {})
  File "/home/minimonk/.local/lib/python3.6/site-packages/tflite_runtime/interpreter.py", line 164, in load_delegate
    library, str(e)))
ValueError: Failed to load delegate from libedgetpu.so.1

 

아무튼 USB 꼽고 하니 먼가 결과는 나오는데

맞나? 싶을 정도로 단순하게 문자열로 나온다.

그리고 USB2.0으로 해서 그런가 초기 속도가 상당히 느리게 나온다.

(홈페이지에서는 10ms 미만이었던 것 같은데)

$ python3 classify_image.py --model models/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite --labels models/inat_bird_labels.txt --input images/parrot.jpg
----INFERENCE TIME----
Note: The first inference on Edge TPU is slow because it includes loading the model into Edge TPU memory.
103.2ms
10.7ms
10.6ms
10.4ms
10.3ms
-------RESULTS--------
Ara macao (Scarlet Macaw): 0.77734

 

혹시나 해서 찾아본 라이브러리 경로.

$ sudo find / -name libedgetpu.so*
/usr/lib/x86_64-linux-gnu/libedgetpu.so.1
/usr/lib/x86_64-linux-gnu/libedgetpu.so.1.0

 

 

+

회사에서 알게된 장비인데 중고로 구매할까 구매대행으로 할까하고 찾아보니

12만원 넘어서 그냥 한번 써보는걸로 만족하려는 중

 

 

+ 2020.10.21

웹캠으로 받아서 TPU로 90가지 객체가 인식 가능한지 한번 해봐? ㅋㅋㅋ

[링크 : https://ultrakid.tistory.com/6]

    [링크 : https://github.com/google-coral/edgetpu/blob/master/examples/object_detection.py]

'프로그램 사용 > google coral' 카테고리의 다른 글

edgetpu_c.h 파일 내용 분석  (0) 2022.02.07
tensorflow brace-enclosed initializer list  (4) 2022.02.07
google coral, tpu yolo  (0) 2022.01.27
coral tpu delegate example  (0) 2022.01.25
google coral  (0) 2020.10.06
Posted by 구차니
개소리 왈왈/컴퓨터2020. 10. 20. 10:43

시작 프로그램에서 이상한게 있어서 막았는데도 부팅 마다 계속 실행되서

이것저것 뒤져보니 DNALauncherSVC 라는 녀석으로 등록되어 있다. -_-

 

'개소리 왈왈 > 컴퓨터' 카테고리의 다른 글

ADATA SSD 또 날아가려고 그러니? ㅜㅜ  (0) 2020.10.30
아아 SD가 죽었습니다 ㅠㅠ  (0) 2020.10.22
USB 사운드 카드 도착!  (0) 2020.10.19
해외 배송은 갑작스럽다  (0) 2020.10.17
컴퓨터 득템?  (0) 2020.10.14
Posted by 구차니
embeded2020. 10. 19. 15:05

uboot에서 cpu id 확인하는 부분을 수정하는 것 같은데 머가 원인이었을까?

 

[링크 : https://community.nxp.com/.../Poor-framerates-on-iMX6-Solo-when-decoding-H264/...]

[링크 : https://community.nxp.com/.../Error-in-opening-firmware-binary-file-for-i-mx6-solo-wandboard/...]

'embeded' 카테고리의 다른 글

i.mx6quad용 gcc 옵션  (0) 2021.01.08
orange pi r1+  (0) 2021.01.08
간만에 부품 지름  (2) 2020.03.04
solidrun CuBox-i2w  (0) 2019.03.10
udoo 보드  (0) 2018.11.29
Posted by 구차니
Programming/c# & winform2020. 10. 19. 14:02

 

[링크 : https://stackoverflow.com/questions/6103705/]

[링크 : https://www.nuget.org/packages/PdfiumViewer/] apache 2.0 license

[링크 : https://www.nuget.org/packages/PdfiumViewer.Native.x86_64.v8-xfa/] apache 2.0 license

 

+

[링크 : https://stackoverflow.com/questions/48740924]

 

[링크 : https://stackoverflow.com/questions/57415902]

  [링크 : https://www.nuget.org/packages/HtmlConvert]

  [링크 : https://www.nuget.org/packages/DynamicPDF/]

    [링크 : www.dynamicpdf.com/Merge-PDF-.NET.aspx]

  [링크 : https://www.codeproject.com/Articles/28283/Simple-NET-PDF-Merger] ??

'Programming > c# & winform' 카테고리의 다른 글

itext7  (0) 2020.10.22
c# pdf itextsharp -> itext7  (0) 2020.10.22
c# printer 사용하기 - printer enumeration  (0) 2020.10.19
c# dialog dual screen  (0) 2020.10.15
c# dialog 전체화면  (0) 2020.10.15
Posted by 구차니