'프로그램 사용'에 해당되는 글 2263건

  1. 2021.02.18 tensorflow model 학습 시작지점
  2. 2021.02.18 gst fpsdisplaysink
  3. 2021.02.18 tensorflow tag set 'serve'
  4. 2021.02.12 ssd_mobilenet_v2 on tf1, tf2
  5. 2021.02.11 fpn - Feature Pyramid Network
  6. 2021.02.10 tensorflow pipeline.config
  7. 2021.02.09 gst videorate
  8. 2021.02.09 ffmpeg fbdev
  9. 2021.02.08 tensorflow pipeline.conf
  10. 2021.02.08 gstreamer tee

텐서플로우 object detection 관련 시작 지점으로 보면 되려나?

 

[링크 : http://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md]

Posted by 구차니

작동 여부는 확인 못함

다만.. debugutilsbad 아래꺼라 정상작동은 보증 못하려나?

 

[링크 : http://gstreamer.freedesktop.org/documentation/debugutilsbad/fpsdisplaysink.html]

'프로그램 사용 > gstreamer' 카테고리의 다른 글

gstreamer 용어  (0) 2021.07.13
gstreamer element 생성 gst_element_factory_make()  (0) 2021.07.13
gst videorate  (0) 2021.02.09
gstreamer tee  (0) 2021.02.08
gstreamer pipeline  (0) 2015.11.02
Posted by 구차니

텐서플로우 모델에서 메타데이터를 보다보니 에러가 발생하는 녀석도 있어서

찾아는 보는데 도대체 먼지 알 수가 없네..

 

[링크 : http://https://www.tensorflow.org/tfx/serving/serving_basic]

[링크 : https://stackoverflow.com/questions/58927662/]

Posted by 구차니

+ 2021.02.16

오는길에 다시 보니 tensorflow model garden / research / object detection 에서 구현된

내용들이지 엄밀하게는 tensorflow 자체의 구현은 아니다.

tensorflow를 가지고 구현한 내용이라고 해야하려나?

-

 

model ssd

type ssd_mobilenet_v2_keras 를

ssd_mobilenet_v2 로 바꾸었더니 아래와 같은 에러가 발생했다.

 

INFO:tensorflow:Maybe overwriting train_steps: 1
I0212 20:50:37.009305 140651210348352 config_util.py:552] Maybe overwriting train_steps: 1
INFO:tensorflow:Maybe overwriting use_bfloat16: False
I0212 20:50:37.009468 140651210348352 config_util.py:552] Maybe overwriting use_bfloat16: False
Traceback (most recent call last):
  File "model_main_tf2.py", line 113, in <module>
    tf.compat.v1.app.run()
  File "/home/minimonk/.local/lib/python3.8/site-packages/tensorflow/python/platform/app.py", line 40, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
  File "/home/minimonk/.local/lib/python3.8/site-packages/absl/app.py", line 303, in run
    _run_main(main, args)
  File "/home/minimonk/.local/lib/python3.8/site-packages/absl/app.py", line 251, in _run_main
    sys.exit(main(argv))
  File "model_main_tf2.py", line 104, in main
    model_lib_v2.train_loop(
  File "/home/minimonk/src/SSD-MobileNet-TF/object_detection/model_lib_v2.py", line 507, in train_loop
    detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'](
  File "/home/minimonk/src/SSD-MobileNet-TF/object_detection/builders/model_builder.py", line 1106, in build
    return build_func(getattr(model_config, meta_architecture), is_training,
  File "/home/minimonk/src/SSD-MobileNet-TF/object_detection/builders/model_builder.py", line 377, in _build_ssd_model
    _check_feature_extractor_exists(ssd_config.feature_extractor.type)
  File "/home/minimonk/src/SSD-MobileNet-TF/object_detection/builders/model_builder.py", line 249, in _check_feature_extractor_exists
    raise ValueError('{} is not supported. See `model_builder.py` for features '
ValueError: ssd_mobilenet_v2 is not supported. See `model_builder.py` for features extractors compatible with different versions of Tensorflow

 

model_builder.py를 열어보라는데 여러개 파일이 나타난다.?

$ sudo find / -name model_builder.py
/home/minimonk/src/SSD-MobileNet-TF/object_detection/builders/model_builder.py
/home/minimonk/src/SSD-MobileNet-TF/models/research/object_detection/builders/model_builder.py
/home/minimonk/src/SSD-MobileNet-TF/models/research/lstm_object_detection/model_builder.py
/home/minimonk/src/SSD-MobileNet-TF/build/lib/object_detection/builders/model_builder.py

 

lstm 어쩌구를 제외하면 용량이 동일하니 같은 파일로 간주하고 하나를 열어보니 다음과 같이 나오는데..

if tf_version.is_tf2() 에 의해서 사용가능한 녀석은.. 

ssd_mobilenet_v2_fpn_keras 와

ssd_mobilenet_v2_keras 뿐이다 -_-

기대했던 ssd_mobilenet_v2는  tf1 ㅠㅠ

$ vi /home/minimonk/src/SSD-MobileNet-TF/object_detection/builders/model_builder.py
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
  from object_detection.models import center_net_mobilenet_v2_feature_extractor
  from object_detection.models import center_net_mobilenet_v2_fpn_feature_extractor
  from object_detection.models import center_net_resnet_feature_extractor
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
  from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor
  if sys.version_info[0] >= 3:
    from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor

 

[링크 : https://stackoverflow.com/questions/65938445/]

 

+

와.. ssd_mobilenet_v2_fpn_keras를 돌리는데 메모리 부족으로 죽어버리네 ㄷㄷ

눈에 보이는건.. additional_layer_depth 인가.. 이걸 줄이고 해봐야 겠네..

    feature_extractor {
      type: 'ssd_mobilenet_v2_fpn_keras'
      use_depthwise: true
      fpn {
        min_level: 3
        max_level: 7
        additional_layer_depth: 128
      }
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          random_normal_initializer {
            stddev: 0.01
            mean: 0.0
          }
        }
        batch_norm {
          scale: true,
          decay: 0.997,
          epsilon: 0.001,
        }
      }
      override_base_feature_extractor_hyperparams: true
    }

 

/home/minimonk/.local/lib/python3.8/site-packages/tensorflow/python/keras/backend.py:434: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model.
  warnings.warn('`tf.keras.backend.set_learning_phase` is deprecated and '
2021-02-12 21:23:47.163320: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 1258291200 exceeds 10% of free system memory.
죽었음

 

+

depth를 줄이고 해보니 되는척 하다가 또 에러가 발생 ㅋㅋ

    ValueError: Number of feature maps is expected to equal the length of `num_anchors_per_location`.

 

되는 척 하더니 안되네? ㅠㅠ

AssertionError: Some Python objects were not bound to checkpointed values, likely due to changes in the Python program: [MirroredVariable:{
  0: <tf.Variable 'block_8_depthwise/depthwise_kernel:0' shape=(3, 3, 384, 1) dtype=float32, numpy=

...

WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
W0212 21:37:27.939997 140162079770432 util.py:168] A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

tensorflow model 학습 시작지점  (0) 2021.02.18
tensorflow tag set 'serve'  (0) 2021.02.18
fpn - Feature Pyramid Network  (0) 2021.02.11
tensorflow pipeline.config  (0) 2021.02.10
tensorflow pipeline.conf  (0) 2021.02.08
Posted by 구차니

모델 생성해서 보니 피라미드라고 불릴 만큼 크고 아름답다(?)

 

원본은 변환하다 문제가 생긴건지 잘 올려져서 그냥 크롬에서 줄여서 올리는데 티가 안나네

이걸 모바일 디바이스에서 돌릴순 있는게 맞나... ㄷㄷ

 

It stands for Feature Pyramid Network. Its a subnetwork which outputs feature maps of different resolutions. An explanation of FPN using detectron2 as an example is here: https://medium.com/@hirotoschwert/digging-into-detectron-2-part-2-dd6e8b0526e

[링크 : https://stackoverflow.com/questions/63653903]

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

tensorflow tag set 'serve'  (0) 2021.02.18
ssd_mobilenet_v2 on tf1, tf2  (0) 2021.02.12
tensorflow pipeline.config  (0) 2021.02.10
tensorflow pipeline.conf  (0) 2021.02.08
tf object detection COCO  (0) 2021.02.05
Posted by 구차니

pipeline.config 파일의 설정에 대한 페이지는 없나?

 

있는거 뜯어보니 상위 엘리먼트(?)는 아래와 같이 5개로 나눠진다.

이름만 보면 직관적이긴 한데 model / training / evaluation 세가지 그리고 training, evaluation에 대한 읽기 설정인 듯.

 

model {}

train_config {}

train_input_reader {}

eval_config {}

eval_input_reader {}

 

google model garden 에서 받아서 파일에서 분석을 해보니 아래와 같은 종류가 나온다.

'cosine'
'darknet'
'dilated_resnet'
'embedded_ssd_mobilenet_v1'
'exponential'
'faster_rcnn_inception_resnet_v2'
'faster_rcnn_inception_resnet_v2_keras'
'faster_rcnn_inception_v2'
'faster_rcnn_nas'
'faster_rcnn_resnet101'
'faster_rcnn_resnet101_keras'
'faster_rcnn_resnet152'
'faster_rcnn_resnet152_keras'
'faster_rcnn_resnet50'
'faster_rcnn_resnet50_fpn_keras'
'faster_rcnn_resnet50_keras'
'identity'
'linear'
'lstm_mobilenet_v1'
'lstm_mobilenet_v1_fpn'
'lstm_ssd_interleaved_mobilenet_v2'
'lstm_ssd_mobilenet_v1'
'mobilenet'
'polynomial'
'resnet'
'sgd'
'spinenet'
'ssd_efficientnet-b0_bifpn_keras'
'ssd_efficientnet-b1_bifpn_keras'
'ssd_efficientnet-b2_bifpn_keras'
'ssd_efficientnet-b3_bifpn_keras'
'ssd_efficientnet-b4_bifpn_keras'
'ssd_efficientnet-b5_bifpn_keras'
'ssd_efficientnet-b6_bifpn_keras'
'ssd_inception_v2'
'ssd_inception_v3'
'ssd_mobiledet_cpu'
'ssd_mobiledet_dsp'
'ssd_mobiledet_edgetpu'
'ssd_mobiledet_gpu'
'ssd_mobilenet_edgetpu'
'ssd_mobilenet_v1'
'ssd_mobilenet_v1_fpn'
'ssd_mobilenet_v1_fpn_keras'
'ssd_mobilenet_v1_ppn'
'ssd_mobilenet_v2'
'ssd_mobilenet_v2_fpn'
'ssd_mobilenet_v2_fpn_keras'
'ssd_mobilenet_v2_keras'
'ssd_mobilenet_v2_mnasfpn'
'ssd_mobilenet_v3_large'
'ssd_mobilenet_v3_small'
'ssd_resnet101_v1_fpn'
'ssd_resnet101_v1_fpn_keras'
'ssd_resnet152_v1_fpn_keras'
'ssd_resnet50_v1_fpn'
'ssd_resnet50_v1_fpn_keras'
'stepwise'

 

아래는 research / object_detection 아래만 검색한 내용

'embedded_ssd_mobilenet_v1'
'faster_rcnn_inception_resnet_v2'
'faster_rcnn_inception_resnet_v2_keras'
'faster_rcnn_inception_v2'
'faster_rcnn_nas'
'faster_rcnn_resnet101'
'faster_rcnn_resnet101_keras'
'faster_rcnn_resnet152'
'faster_rcnn_resnet152_keras'
'faster_rcnn_resnet50'
'faster_rcnn_resnet50_fpn_keras'
'faster_rcnn_resnet50_keras'
'ssd_efficientnet-b0_bifpn_keras'
'ssd_efficientnet-b1_bifpn_keras'
'ssd_efficientnet-b2_bifpn_keras'
'ssd_efficientnet-b3_bifpn_keras'
'ssd_efficientnet-b4_bifpn_keras'
'ssd_efficientnet-b5_bifpn_keras'
'ssd_efficientnet-b6_bifpn_keras'
'ssd_inception_v2'
'ssd_inception_v3'
'ssd_mobiledet_cpu'
'ssd_mobiledet_dsp'
'ssd_mobiledet_edgetpu'
'ssd_mobiledet_gpu'
'ssd_mobilenet_edgetpu'
'ssd_mobilenet_v1'
'ssd_mobilenet_v1_fpn'
'ssd_mobilenet_v1_fpn_keras'
'ssd_mobilenet_v1_ppn'
'ssd_mobilenet_v2'
'ssd_mobilenet_v2_fpn'
'ssd_mobilenet_v2_fpn_keras'
'ssd_mobilenet_v2_keras'
'ssd_mobilenet_v2_mnasfpn'
'ssd_mobilenet_v3_large'
'ssd_mobilenet_v3_small'
'ssd_resnet101_v1_fpn'
'ssd_resnet101_v1_fpn_keras'
'ssd_resnet152_v1_fpn_keras'
'ssd_resnet50_v1_fpn'
'ssd_resnet50_v1_fpn_keras'

 

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

ssd_mobilenet_v2 on tf1, tf2  (0) 2021.02.12
fpn - Feature Pyramid Network  (0) 2021.02.11
tensorflow pipeline.conf  (0) 2021.02.08
tf object detection COCO  (0) 2021.02.05
tensorflow lite SELECT_TF_OPS  (0) 2021.02.02
Posted by 구차니

'프로그램 사용 > gstreamer' 카테고리의 다른 글

gstreamer element 생성 gst_element_factory_make()  (0) 2021.07.13
gst fpsdisplaysink  (0) 2021.02.18
gstreamer tee  (0) 2021.02.08
gstreamer pipeline  (0) 2015.11.02
gstreamer  (0) 2015.08.05
Posted by 구차니

 

 

[링크 : https://unix.stackexchange.com/questions/342815/how-to-send-ffmpeg-output-to-framebuffer]

 

Pixel formats:
I.... = Supported Input  format for conversion
.O... = Supported Output format for conversion
..H.. = Hardware accelerated format
...P. = Paletted format
....B = Bitstream format
FLAGS NAME            NB_COMPONENTS BITS_PER_PIXEL
-----
IO... yuv420p                3            12
IO... yuyv422                3            16
IO... rgb24                  3            24
IO... bgr24                  3            24
IO... yuv422p                3            16
IO... yuv444p                3            24
IO... yuv410p                3             9
IO... yuv411p                3            12
IO... gray                   1             8

[링크 : https://ffmpeg.org/ffmpeg-devices.html]

'프로그램 사용 > ffmpeg & ffserver' 카테고리의 다른 글

ffmpeg을 이용한 rgb565 to bmp  (0) 2021.10.18
ffmpeg 재생 어렵다 -_ㅠ  (0) 2021.02.22
ffmpeg build  (0) 2020.11.25
webm을 mp3로 변환하기  (0) 2020.04.01
ffmpeg h264 encoding 옵션  (0) 2019.02.22
Posted by 구차니

 

137 train_config {
138   batch_size: 10
139   data_augmentation_options {
140     random_horizontal_flip {
141     }
142   }
143   data_augmentation_options {
144     ssd_random_crop {
145     }
146   }
147   sync_replicas: true
148   optimizer {
149     momentum_optimizer {
150       learning_rate {
151         cosine_decay_learning_rate {
152           learning_rate_base: 0.800000011920929
153           total_steps: 50000
154           warmup_learning_rate: 0.13333000242710114
155           warmup_steps: 2000
156         }
157       }
158       momentum_optimizer_value: 0.8999999761581421
159     }
160     use_moving_average: false
161   }
162   fine_tune_checkpoint: "ssd_mobilenet_v2_320x320_coco17_tpu-8/checkpoint/ckpt-0"
163   num_steps: 50000
164   startup_delay_steps: 0.0
165   replicas_to_aggregate: 8
166   max_number_of_boxes: 100
167   unpad_groundtruth_tensors: false
168   fine_tune_checkpoint_type: "detection"
169   fine_tune_checkpoint_version: V2
170 }


148   optimizer {
149     momentum_optimizer {
150       learning_rate {
151         cosine_decay_learning_rate {
152           learning_rate_base: 0.800000011920929
153           total_steps: 50000
154           warmup_learning_rate: 0.13333000242710114
155           warmup_steps: 2000
156         }
157       }
158       momentum_optimizer_value: 0.8999999761581421
159     }
160     use_moving_average: false
161   }

[링크 : https://github.com/tensorflow/models/blob/master/research/object_detection/configs/tf2/ssd_mobilenet_v2_320x320_coco17_tpu-8.config]

[링크 : https://blog.naver.com/bdh0727/221537759295]

 

+

ModuleNotFoundError: No module named 'tf_slim'
ModuleNotFoundError: No module named 'pycocotools'
ModuleNotFoundError: No module named 'lvis

 

num_train_steps=1로 하니 cpu 로만 학습해도 1회 뿐이라 금세 끝난다.

$ python3 model_main_tf2.py --pipeline_config_path=ssd_mobilenet_v2_320x320_coco17_tpu-8/pipeline.config --model_dir=trained-checkpoint --alsologtostderr --num_train_steps=1 --sample_1_of_n_eval_examples=1 --num_eval_steps=1
$ find ./ -type f -mmin -10
/trained-checkpoint/train/events.out.tfevents.1612780803.mini2760p.5335.2928.v2

 

$ python3 exporter_main_v2.py --input_type image_tensor --pipeline_config_path ./ssd_mobilenet_v2_320x320_coco17_tpu-8/pipeline.config --trained_checkpoint_dir ./trained-checkpoint --output_directory exported-model/mobile-model
$ find ./ -type f -mmin -10
./exported-model/mobile-model/saved_model/variables/variables.index
./exported-model/mobile-model/saved_model/variables/variables.data-00000-of-00001
./exported-model/mobile-model/saved_model/saved_model.pb
./exported-model/mobile-model/checkpoint/checkpoint
./exported-model/mobile-model/checkpoint/ckpt-0.data-00000-of-00001
./exported-model/mobile-model/checkpoint/ckpt-0.index
./exported-model/mobile-model/pipeline.config

 

[링크 : https://github.com/abhimanyu1990/SSD-Mobilenet-Custom-Object-Detector-Model-using-Tensorflow-2] <<

[링크 : https://stackoverflow.com/questions/64510791/tf2-object-detection-api-model-main-tf2-py-validation-loss]

[링크 : https://ichi.pro/ko/tensorflow-gaegche-gamji-gaideu-tensorflow-2-252181752953859]

 

+

[링크 : https://neptune.ai/blog/how-to-train-your-own-object-detector-using-tensorflow-object-detection-api]

 

+

[링크 : https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/auto_examples/plot_object_detection_saved_model.html]

[링크 : https://github.com/tensorflow/models/tree/master/research/object_detection/configs/tf2]

[링크 : https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md]

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

fpn - Feature Pyramid Network  (0) 2021.02.11
tensorflow pipeline.config  (0) 2021.02.10
tf object detection COCO  (0) 2021.02.05
tensorflow lite SELECT_TF_OPS  (0) 2021.02.02
saved_model_cli  (0) 2021.02.02
Posted by 구차니

요런식으로 해두는걸 tee 라고 하는듯

gst-launch-1.0 filesrc location=song.ogg ! decodebin ! tee name=t ! queue ! audioconvert ! audioresample ! autoaudiosink t. ! queue ! audioconvert ! goom ! videoconvert ! autovideosink

[링크 : https://gstreamer.freedesktop.org/documentation/coreelements/tee.html]

'프로그램 사용 > gstreamer' 카테고리의 다른 글

gstreamer element 생성 gst_element_factory_make()  (0) 2021.07.13
gst fpsdisplaysink  (0) 2021.02.18
gst videorate  (0) 2021.02.09
gstreamer pipeline  (0) 2015.11.02
gstreamer  (0) 2015.08.05
Posted by 구차니