'프로그램 사용'에 해당되는 글 2359건

  1. 2025.09.15 mobilenet 학습시키기 with keras, tensorflow
  2. 2025.09.15 iperf3 udp 속도 테스트 on rpi 4
  3. 2025.09.11 gstpipelinestudio
  4. 2025.09.11 hackrf portapack (portable)
  5. 2025.09.11 gnuradio LoRa
  6. 2025.09.08 ssh -t
  7. 2025.09.05 nnstreamer ubuntu package
  8. 2025.09.05 gemini + claude MCP
  9. 2025.09.05 mean Average Precision(mAP)
  10. 2025.09.05 내장 그래픽으로 ROCm?

대충 버전이 맞았는지 돌아는 간다.


Epoch 1/25
 52/755 [=>............................] - ETA: 1:04:39 - loss: 0.3203 - accuracy: 0.8534    

 

주요 설치 패키지 버전은 아래와 같고

keras                        2.14.0
mobilenet-v3                 0.1.2
numpy                        1.24.4
tensorflow                   2.14.0

 

수정된 소스는 다음과 같다.

그런데 voc 디렉토리를 통채로 넣었는데 어찌 돌아는 가는데.. 어떤 파일로 학습을 하는거냐.. -_-

from keras.applications import MobileNet
from keras.models import Sequential,Model 
from keras.layers import Dense,Dropout,Activation,Flatten,GlobalAveragePooling2D
from keras.layers import Conv2D,MaxPooling2D,ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# MobileNet is designed to work with images of dim 224,224
img_rows,img_cols = 224,224

MobileNet = MobileNet(weights='imagenet',include_top=False,input_shape=(img_rows,img_cols,3))

# Here we freeze the last 4 layers
# Layers are set to trainable as True by default

for layer in MobileNet.layers:
    layer.trainable = True

# Let's print our layers
for (i,layer) in enumerate(MobileNet.layers):
    print(str(i),layer.__class__.__name__,layer.trainable)

def addTopModelMobileNet(bottom_model, num_classes):
    """creates the top or head of the model that will be 
    placed ontop of the bottom layers"""
    top_model = bottom_model.output
    top_model = GlobalAveragePooling2D()(top_model)
    top_model = Dense(1024,activation='relu')(top_model)
    top_model = Dense(1024,activation='relu')(top_model)
    top_model = Dense(512,activation='relu')(top_model)
    top_model = Dense(num_classes,activation='softmax')(top_model)
    return top_model

num_classes = 5  # ['Angry','Happy','Neutral','Sad','Surprise']

FC_Head = addTopModelMobileNet(MobileNet, num_classes)

model = Model(inputs = MobileNet.input, outputs = FC_Head)

print(model.summary())

train_data_dir = 'VOC2012_train_val/VOC2012_train_val'
validation_data_dir = 'VOC2012_test/VOC2012_test'

train_datagen = ImageDataGenerator(
                    rescale=1./255,
                    rotation_range=30,
                    width_shift_range=0.3,
                    height_shift_range=0.3,
                    horizontal_flip=True,
                    fill_mode='nearest'
                                   )

validation_datagen = ImageDataGenerator(rescale=1./255)

batch_size = 32

train_generator = train_datagen.flow_from_directory(
                        train_data_dir,
                        target_size = (img_rows,img_cols),
                        batch_size = batch_size,
                        class_mode = 'categorical'
                        )

validation_generator = validation_datagen.flow_from_directory(
                            validation_data_dir,
                            target_size=(img_rows,img_cols),
                            batch_size=batch_size,
                            class_mode='categorical')

from keras.optimizers import RMSprop,Adam
from keras.callbacks import ModelCheckpoint,EarlyStopping,ReduceLROnPlateau

checkpoint = ModelCheckpoint(
                             'emotion_face_mobilNet.h5',
                             monitor='val_loss',
                             mode='min',
                             save_best_only=True,
                             verbose=1)

earlystop = EarlyStopping(
                          monitor='val_loss',
                          min_delta=0,
                          patience=10,
                          verbose=1,restore_best_weights=True)

learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', 
                                            patience=5, 
                                            verbose=1, 
                                            factor=0.2, 
                                            min_lr=0.0001)

callbacks = [earlystop,checkpoint,learning_rate_reduction]

model.compile(loss='categorical_crossentropy',
              optimizer=Adam(learning_rate=0.001),
              metrics=['accuracy']
              )

nb_train_samples = 24176
nb_validation_samples = 3006

epochs = 25

history = model.fit(
            train_generator,
            steps_per_epoch=nb_train_samples//batch_size,     
            epochs=epochs,
            callbacks=callbacks,
            validation_data=validation_generator,
            validation_steps=nb_validation_samples//batch_size)


 

돌리다가 에러가 나서 멘붕.. 급 귀찮아짐..

먼가 파일 갯수가 안 맞는건가?

Epoch 1/25
718/755 [===========================>..] - ETA: 3:28 - loss: 0.1569 - accuracy: 0.9301WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 18875 batches). You may need to use the repeat() function when building your dataset.
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler
    raise e.with_traceback(filtered_tb) from None
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/eager/execute.py", line 60, in quick_execute
    tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:

Detected at node categorical_crossentropy/softmax_cross_entropy_with_logits defined at (most recent call last):
  File "<stdin>", line 1, in <module>

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 1832, in fit

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 2272, in evaluate

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 4079, in run_step

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 2042, in test_function

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 2025, in step_function

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 2013, in run_step

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 1895, in test_step

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/training.py", line 1185, in compute_loss

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/engine/compile_utils.py", line 277, in __call__

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/losses.py", line 143, in __call__

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/losses.py", line 270, in call

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/losses.py", line 2221, in categorical_crossentropy

  File "/home/minimonk/.local/lib/python3.10/site-packages/keras/src/backend.py", line 5581, in categorical_crossentropy

logits and labels must be broadcastable: logits_size=[32,5] labels_size=[32,3]
 [[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_test_function_15346]
>>> 

 

전체 pip 패키지들 버전 정보는 아래와 같다.

$ pip list
Package                      Version
---------------------------- ----------------
absl-py                      2.3.1
appdirs                      1.4.4
apturl                       0.5.2
astunparse                   1.6.3
attrs                        21.2.0
bcrypt                       3.2.0
beautifulsoup4               4.10.0
beniget                      0.4.1
blinker                      1.4
Brlapi                       0.8.3
Brotli                       1.0.9
cachetools                   5.5.2
certifi                      2020.6.20
chardet                      4.0.0
click                        8.0.3
colorama                     0.4.4
command-not-found            0.3
cryptography                 3.4.8
cupshelpers                  1.0
cycler                       0.11.0
dbus-python                  1.2.18
decorator                    4.4.2
defer                        1.0.6
distro                       1.7.0
distro-info                  1.1+ubuntu0.2
duplicity                    0.8.21
fasteners                    0.14.1
flatbuffers                  25.2.10
fonttools                    4.29.1
fs                           2.4.12
future                       0.18.2
gast                         0.6.0
google-auth                  2.40.3
google-auth-oauthlib         1.0.0
google-pasta                 0.2.0
grpcio                       1.74.0
h5py                         3.14.0
html5lib                     1.1
httplib2                     0.20.2
idna                         3.3
importlib-metadata           4.6.4
jeepney                      0.7.1
keras                        2.14.0
keyring                      23.5.0
kiwisolver                   1.3.2
language-selector            0.1
launchpadlib                 1.10.16
lazr.restfulclient           0.14.4
lazr.uri                     1.0.6
libclang                     18.1.1
lockfile                     0.12.2
louis                        3.20.0
lxml                         4.8.0
lz4                          3.1.3+dfsg
macaroonbakery               1.3.1
Mako                         1.1.3
Markdown                     3.9
markdown-it-py               4.0.0
MarkupSafe                   3.0.2
matplotlib                   3.5.1
mdurl                        0.1.2
meld                         3.20.4
ml-dtypes                    0.2.0
mobilenet-v3                 0.1.2
monotonic                    1.6
more-itertools               8.10.0
mpmath                       0.0.0
namex                        0.1.0
netifaces                    0.11.0
numpy                        1.24.4
oauthlib                     3.2.0
olefile                      0.46
opt_einsum                   3.4.0
optree                       0.17.0
packaging                    21.3
paramiko                     2.9.3
pexpect                      4.8.0
Pillow                       9.0.1
pip                          22.0.2
Pivy                         0.6.5
ply                          3.11
protobuf                     4.25.8
ptyprocess                   0.7.0
pyasn1                       0.6.1
pyasn1_modules               0.4.2
pycairo                      1.20.1
pycups                       2.0.1
Pygments                     2.19.2
PyGObject                    3.42.1
PyJWT                        2.3.0
pymacaroons                  0.13.0
PyNaCl                       1.5.0
pyparsing                    2.4.7
pyRFC3339                    1.1
python-apt                   2.4.0+ubuntu4
python-dateutil              2.8.1
python-debian                0.1.43+ubuntu1.1
pythran                      0.10.0
pytz                         2022.1
pyxdg                        0.27
PyYAML                       5.4.1
reportlab                    3.6.8
requests                     2.25.1
requests-oauthlib            2.0.0
rich                         14.1.0
rsa                          4.9.1
scipy                        1.15.3
scour                        0.38.2
SecretStorage                3.3.1
setuptools                   59.6.0
six                          1.16.0
soupsieve                    2.3.1
ssh-import-id                5.11
sympy                        1.9
systemd-python               234
tensorboard                  2.14.1
tensorboard-data-server      0.7.2
tensorflow                   2.14.0
tensorflow-estimator         2.14.0
tensorflow-io-gcs-filesystem 0.37.1
termcolor                    3.1.0
typing_extensions            4.15.0
ubuntu-drivers-common        0.0.0
ubuntu-pro-client            8001
ufoLib2                      0.13.1
ufw                          0.36.1
unattended-upgrades          0.1
unicodedata2                 14.0.0
urllib3                      1.26.5
usb-creator                  0.3.7
wadllib                      1.3.6
webencodings                 0.5.1
Werkzeug                     3.1.3
wheel                        0.37.1
wrapt                        1.14.2
xdg                          5
xkit                         0.0.0
zipp                         1.0.0

 

-------- 아래는 참고 안하는게 속 편할지도...?

2020년 3월의 문서를 keras와 tensorflow로 2025년에 다시 시도해봄

 

일단은 아래처럼 설치하니 어찌 되는 느낌

$ pip install mobilenet-v3
$ pip install tensorflow
$ pip install numpy==1.26.4

 

상세로그

$ pip install mobilenet-v3
Defaulting to user installation because normal site-packages is not writeable
Collecting mobilenet-v3
  Downloading mobilenet_v3-0.1.4-py3-none-any.whl (18 kB)
Installing collected packages: mobilenet-v3
Successfully installed mobilenet-v3-0.1.4

$ pip install tensorflow
Defaulting to user installation because normal site-packages is not writeable
Collecting tensorflow
  Downloading tensorflow-2.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (620.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 620.4/620.4 MB 2.5 MB/s eta 0:00:00
Collecting google_pasta>=0.1.1
  Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.5/57.5 KB 9.6 MB/s eta 0:00:00
Collecting absl-py>=1.0.0
  Downloading absl_py-2.3.1-py3-none-any.whl (135 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 135.8/135.8 KB 12.8 MB/s eta 0:00:00
Collecting libclang>=13.0.0
  Downloading libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl (24.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 24.5/24.5 MB 9.6 MB/s eta 0:00:00
Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1
  Downloading gast-0.6.0-py3-none-any.whl (21 kB)
Collecting protobuf>=5.28.0
  Downloading protobuf-6.32.1-cp39-abi3-manylinux2014_x86_64.whl (322 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 322.0/322.0 KB 11.5 MB/s eta 0:00:00
Collecting ml_dtypes<1.0.0,>=0.5.1
  Downloading ml_dtypes-0.5.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (4.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.9/4.9 MB 9.9 MB/s eta 0:00:00
Collecting numpy>=1.26.0
  Downloading numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 16.8/16.8 MB 9.9 MB/s eta 0:00:00
Requirement already satisfied: packaging in /usr/lib/python3/dist-packages (from tensorflow) (21.3)
Requirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow) (1.16.0)
Collecting termcolor>=1.1.0
  Downloading termcolor-3.1.0-py3-none-any.whl (7.7 kB)
Collecting typing_extensions>=3.6.6
  Downloading typing_extensions-4.15.0-py3-none-any.whl (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.6/44.6 KB 8.2 MB/s eta 0:00:00
Collecting tensorboard~=2.20.0
  Downloading tensorboard-2.20.0-py3-none-any.whl (5.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 10.9 MB/s eta 0:00:00
Collecting astunparse>=1.6.0
  Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting opt_einsum>=2.3.2
  Downloading opt_einsum-3.4.0-py3-none-any.whl (71 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 71.9/71.9 KB 8.4 MB/s eta 0:00:00
Collecting h5py>=3.11.0
  Downloading h5py-3.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.6/4.6 MB 9.4 MB/s eta 0:00:00
Collecting flatbuffers>=24.3.25
  Downloading flatbuffers-25.2.10-py2.py3-none-any.whl (30 kB)
Collecting keras>=3.10.0
  Downloading keras-3.11.3-py3-none-any.whl (1.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.4/1.4 MB 8.0 MB/s eta 0:00:00
Requirement already satisfied: setuptools in /usr/lib/python3/dist-packages (from tensorflow) (59.6.0)
Requirement already satisfied: requests<3,>=2.21.0 in /usr/lib/python3/dist-packages (from tensorflow) (2.25.1)
Collecting wrapt>=1.11.0
  Downloading wrapt-1.17.3-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (81 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 82.0/82.0 KB 7.3 MB/s eta 0:00:00
Collecting grpcio<2.0,>=1.24.3
  Downloading grpcio-1.74.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 12.3 MB/s eta 0:00:00
Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/lib/python3/dist-packages (from astunparse>=1.6.0->tensorflow) (0.37.1)
Collecting optree
  Downloading optree-0.17.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (387 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 388.0/388.0 KB 11.8 MB/s eta 0:00:00
Collecting rich
  Downloading rich-14.1.0-py3-none-any.whl (243 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 243.4/243.4 KB 10.4 MB/s eta 0:00:00
Collecting namex
  Downloading namex-0.1.0-py3-none-any.whl (5.9 kB)
Requirement already satisfied: pillow in /usr/lib/python3/dist-packages (from tensorboard~=2.20.0->tensorflow) (9.0.1)
Collecting werkzeug>=1.0.1
  Downloading werkzeug-3.1.3-py3-none-any.whl (224 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 224.5/224.5 KB 7.7 MB/s eta 0:00:00
Collecting markdown>=2.6.8
  Downloading markdown-3.9-py3-none-any.whl (107 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 107.4/107.4 KB 7.1 MB/s eta 0:00:00
Collecting tensorboard-data-server<0.8.0,>=0.7.0
  Downloading tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl (6.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.6/6.6 MB 9.9 MB/s eta 0:00:00
Collecting MarkupSafe>=2.1.1
  Downloading MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20 kB)
Collecting markdown-it-py>=2.2.0
  Downloading markdown_it_py-4.0.0-py3-none-any.whl (87 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.3/87.3 KB 8.2 MB/s eta 0:00:00
Collecting pygments<3.0.0,>=2.13.0
  Downloading pygments-2.19.2-py3-none-any.whl (1.2 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 13.2 MB/s eta 0:00:00
Collecting mdurl~=0.1
  Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)
Installing collected packages: namex, libclang, flatbuffers, wrapt, typing_extensions, termcolor, tensorboard-data-server, pygments, protobuf, opt_einsum, numpy, mdurl, MarkupSafe, markdown, grpcio, google_pasta, gast, astunparse, absl-py, werkzeug, optree, ml_dtypes, markdown-it-py, h5py, tensorboard, rich, keras, tensorflow
  WARNING: The script pygmentize is installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
  WARNING: The scripts f2py and numpy-config are installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
  WARNING: The script markdown_py is installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
  WARNING: The script markdown-it is installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
  WARNING: The script tensorboard is installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
  WARNING: The scripts import_pb_to_tensorboard, saved_model_cli, tensorboard, tf_upgrade_v2, tflite_convert and toco are installed in '/home/minimonk/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed MarkupSafe-3.0.2 absl-py-2.3.1 astunparse-1.6.3 flatbuffers-25.2.10 gast-0.6.0 google_pasta-0.2.0 grpcio-1.74.0 h5py-3.14.0 keras-3.11.3 libclang-18.1.1 markdown-3.9 markdown-it-py-4.0.0 mdurl-0.1.2 ml_dtypes-0.5.3 namex-0.1.0 numpy-2.2.6 opt_einsum-3.4.0 optree-0.17.0 protobuf-6.32.1 pygments-2.19.2 rich-14.1.0 tensorboard-2.20.0 tensorboard-data-server-0.7.2 tensorflow-2.20.0 termcolor-3.1.0 typing_extensions-4.15.0 werkzeug-3.1.3 wrapt-1.17.3
minimonk@minimonk-HP-EliteBook-2760p:~$ pip install keras
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: keras in ./.local/lib/python3.10/site-packages (3.11.3)
Requirement already satisfied: absl-py in ./.local/lib/python3.10/site-packages (from keras) (2.3.1)
Requirement already satisfied: numpy in ./.local/lib/python3.10/site-packages (from keras) (2.2.6)
Requirement already satisfied: rich in ./.local/lib/python3.10/site-packages (from keras) (14.1.0)
Requirement already satisfied: ml-dtypes in ./.local/lib/python3.10/site-packages (from keras) (0.5.3)
Requirement already satisfied: namex in ./.local/lib/python3.10/site-packages (from keras) (0.1.0)
Requirement already satisfied: optree in ./.local/lib/python3.10/site-packages (from keras) (0.17.0)
Requirement already satisfied: h5py in ./.local/lib/python3.10/site-packages (from keras) (3.14.0)
Requirement already satisfied: packaging in /usr/lib/python3/dist-packages (from keras) (21.3)
Requirement already satisfied: typing-extensions>=4.6.0 in ./.local/lib/python3.10/site-packages (from optree->keras) (4.15.0)
Requirement already satisfied: markdown-it-py>=2.2.0 in ./.local/lib/python3.10/site-packages (from rich->keras) (4.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./.local/lib/python3.10/site-packages (from rich->keras) (2.19.2)
Requirement already satisfied: mdurl~=0.1 in ./.local/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich->keras) (0.1.2)

$ pip install numpy==1.26.4

 

numpy 1.26.4를 깔게 된 에러메시지

$ python3
Python 3.10.12 (main, Aug 15 2025, 14:32:43) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
2025-09-15 15:28:06.544207: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
/usr/lib/python3/dist-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 2.2.6
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.2.6 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.

If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.

Traceback (most recent call last):  File "<stdin>", line 1, in <module>
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/__init__.py", line 49, in <module>
    from tensorflow._api.v2 import __internal__
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/_api/v2/__internal__/__init__.py", line 13, in <module>
    from tensorflow._api.v2.__internal__ import feature_column
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/_api/v2/__internal__/feature_column/__init__.py", line 8, in <module>
    from tensorflow.python.feature_column.feature_column_v2 import DenseColumn # line: 1777
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/feature_column/feature_column_v2.py", line 38, in <module>
    from tensorflow.python.feature_column import feature_column as fc_old
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/feature_column/feature_column.py", line 41, in <module>
    from tensorflow.python.layers import base
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/layers/base.py", line 16, in <module>
    from tensorflow.python.keras.legacy_tf_layers import base
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/keras/__init__.py", line 25, in <module>
    from tensorflow.python.keras import models
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/keras/models.py", line 25, in <module>
    from tensorflow.python.keras.engine import training_v1
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/keras/engine/training_v1.py", line 46, in <module>
    from tensorflow.python.keras.engine import training_arrays_v1
  File "/home/minimonk/.local/lib/python3.10/site-packages/tensorflow/python/keras/engine/training_arrays_v1.py", line 37, in <module>
    from scipy.sparse import issparse  # pylint: disable=g-import-not-at-top
  File "/usr/lib/python3/dist-packages/scipy/sparse/__init__.py", line 267, in <module>
    from ._csr import *
  File "/usr/lib/python3/dist-packages/scipy/sparse/_csr.py", line 10, in <module>
    from ._sparsetools import (csr_tocsc, csr_tobsr, csr_count_blocks,
AttributeError: _ARRAY_API not found

[링크 : https://mhui123.tistory.com/143]

 

그런데 mobilenet이 ssd가 없으면 classification만 되는 놈이었나?

from keras.applications import MobileNet
from keras.layers import Dense,Dropout,Activation, Flatten, GlobalAveragePooling2D
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import RMSprop, Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau

img_rows,img_cols = 224,224
MobileNet = MobileNet(weights='imagenet', include_top=False, input_shape=(img_rows, img_cols, 3))
2025-09-15 16:00:19.852870: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/mobilenet/mobilenet_1_0_224_tf_no_top.h5
17225924/17225924 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step 

>>> for layer in MobileNet.layers:
...   layer.trainable = True
... 
>>> for (i, layer) in enumerate(MobileNet.layers):
...   print(str(i), layer.__class__.__name__, layer.trainable)
... 
0 InputLayer True
1 Conv2D True
2 BatchNormalization True
3 ReLU True
4 DepthwiseConv2D True
5 BatchNormalization True
6 ReLU True
7 Conv2D True
8 BatchNormalization True
9 ReLU True
10 ZeroPadding2D True
11 DepthwiseConv2D True
12 BatchNormalization True
13 ReLU True
14 Conv2D True
15 BatchNormalization True
16 ReLU True
17 DepthwiseConv2D True
18 BatchNormalization True
19 ReLU True
20 Conv2D True
21 BatchNormalization True
22 ReLU True
23 ZeroPadding2D True
24 DepthwiseConv2D True
25 BatchNormalization True
26 ReLU True
27 Conv2D True
28 BatchNormalization True
29 ReLU True
30 DepthwiseConv2D True
31 BatchNormalization True
32 ReLU True
33 Conv2D True
34 BatchNormalization True
35 ReLU True
36 ZeroPadding2D True
37 DepthwiseConv2D True
38 BatchNormalization True
39 ReLU True
40 Conv2D True
41 BatchNormalization True
42 ReLU True
43 DepthwiseConv2D True
44 BatchNormalization True
45 ReLU True
46 Conv2D True
47 BatchNormalization True
48 ReLU True
49 DepthwiseConv2D True
50 BatchNormalization True
51 ReLU True
52 Conv2D True
53 BatchNormalization True
54 ReLU True
55 DepthwiseConv2D True
56 BatchNormalization True
57 ReLU True
58 Conv2D True
59 BatchNormalization True
60 ReLU True
61 DepthwiseConv2D True
62 BatchNormalization True
63 ReLU True
64 Conv2D True
65 BatchNormalization True
66 ReLU True
67 DepthwiseConv2D True
68 BatchNormalization True
69 ReLU True
70 Conv2D True
71 BatchNormalization True
72 ReLU True
73 ZeroPadding2D True
74 DepthwiseConv2D True
75 BatchNormalization True
76 ReLU True
77 Conv2D True
78 BatchNormalization True
79 ReLU True
80 DepthwiseConv2D True
81 BatchNormalization True
82 ReLU True
83 Conv2D True
84 BatchNormalization True
85 ReLU True

>>> MobileNet.output
<KerasTensor shape=(None, 7, 7, 1024), dtype=float32, sparse=False, ragged=False, name=keras_tensor_85>
>>> MobileNet.input
<KerasTensor shape=(None, 224, 224, 3), dtype=float32, sparse=False, ragged=False, name=keras_tensor>
>>> MobileNet.summary()
Model: "mobilenet_1.00_224"
┏--------------------------------------┳-----------------------------┳-----------------┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡--------------------------------------╇-----------------------------╇-----------------┩
│ input_layer (InputLayer)             │ (None, 224, 224, 3)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv1 (Conv2D)                       │ (None, 112, 112, 32)        │             864 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv1_bn (BatchNormalization)        │ (None, 112, 112, 32)        │             128 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv1_relu (ReLU)                    │ (None, 112, 112, 32)        │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_1 (DepthwiseConv2D)          │ (None, 112, 112, 32)        │             288 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_1_bn (BatchNormalization)    │ (None, 112, 112, 32)        │             128 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_1_relu (ReLU)                │ (None, 112, 112, 32)        │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_1 (Conv2D)                   │ (None, 112, 112, 64)        │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_1_bn (BatchNormalization)    │ (None, 112, 112, 64)        │             256 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_1_relu (ReLU)                │ (None, 112, 112, 64)        │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pad_2 (ZeroPadding2D)           │ (None, 113, 113, 64)        │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_2 (DepthwiseConv2D)          │ (None, 56, 56, 64)          │             576 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_2_bn (BatchNormalization)    │ (None, 56, 56, 64)          │             256 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_2_relu (ReLU)                │ (None, 56, 56, 64)          │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_2 (Conv2D)                   │ (None, 56, 56, 128)         │           8,192 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_2_bn (BatchNormalization)    │ (None, 56, 56, 128)         │             512 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_2_relu (ReLU)                │ (None, 56, 56, 128)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_3 (DepthwiseConv2D)          │ (None, 56, 56, 128)         │           1,152 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_3_bn (BatchNormalization)    │ (None, 56, 56, 128)         │             512 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_3_relu (ReLU)                │ (None, 56, 56, 128)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_3 (Conv2D)                   │ (None, 56, 56, 128)         │          16,384 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_3_bn (BatchNormalization)    │ (None, 56, 56, 128)         │             512 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_3_relu (ReLU)                │ (None, 56, 56, 128)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pad_4 (ZeroPadding2D)           │ (None, 57, 57, 128)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_4 (DepthwiseConv2D)          │ (None, 28, 28, 128)         │           1,152 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_4_bn (BatchNormalization)    │ (None, 28, 28, 128)         │             512 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_4_relu (ReLU)                │ (None, 28, 28, 128)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_4 (Conv2D)                   │ (None, 28, 28, 256)         │          32,768 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_4_bn (BatchNormalization)    │ (None, 28, 28, 256)         │           1,024 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_4_relu (ReLU)                │ (None, 28, 28, 256)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_5 (DepthwiseConv2D)          │ (None, 28, 28, 256)         │           2,304 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_5_bn (BatchNormalization)    │ (None, 28, 28, 256)         │           1,024 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_5_relu (ReLU)                │ (None, 28, 28, 256)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_5 (Conv2D)                   │ (None, 28, 28, 256)         │          65,536 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_5_bn (BatchNormalization)    │ (None, 28, 28, 256)         │           1,024 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_5_relu (ReLU)                │ (None, 28, 28, 256)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pad_6 (ZeroPadding2D)           │ (None, 29, 29, 256)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_6 (DepthwiseConv2D)          │ (None, 14, 14, 256)         │           2,304 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_6_bn (BatchNormalization)    │ (None, 14, 14, 256)         │           1,024 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_6_relu (ReLU)                │ (None, 14, 14, 256)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_6 (Conv2D)                   │ (None, 14, 14, 512)         │         131,072 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_6_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_6_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_7 (DepthwiseConv2D)          │ (None, 14, 14, 512)         │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_7_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_7_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_7 (Conv2D)                   │ (None, 14, 14, 512)         │         262,144 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_7_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_7_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_8 (DepthwiseConv2D)          │ (None, 14, 14, 512)         │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_8_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_8_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_8 (Conv2D)                   │ (None, 14, 14, 512)         │         262,144 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_8_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_8_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_9 (DepthwiseConv2D)          │ (None, 14, 14, 512)         │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_9_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_9_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_9 (Conv2D)                   │ (None, 14, 14, 512)         │         262,144 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_9_bn (BatchNormalization)    │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_9_relu (ReLU)                │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_10 (DepthwiseConv2D)         │ (None, 14, 14, 512)         │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_10_bn (BatchNormalization)   │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_10_relu (ReLU)               │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_10 (Conv2D)                  │ (None, 14, 14, 512)         │         262,144 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_10_bn (BatchNormalization)   │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_10_relu (ReLU)               │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_11 (DepthwiseConv2D)         │ (None, 14, 14, 512)         │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_11_bn (BatchNormalization)   │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_11_relu (ReLU)               │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_11 (Conv2D)                  │ (None, 14, 14, 512)         │         262,144 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_11_bn (BatchNormalization)   │ (None, 14, 14, 512)         │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_11_relu (ReLU)               │ (None, 14, 14, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pad_12 (ZeroPadding2D)          │ (None, 15, 15, 512)         │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_12 (DepthwiseConv2D)         │ (None, 7, 7, 512)           │           4,608 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_12_bn (BatchNormalization)   │ (None, 7, 7, 512)           │           2,048 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_12_relu (ReLU)               │ (None, 7, 7, 512)           │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_12 (Conv2D)                  │ (None, 7, 7, 1024)          │         524,288 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_12_bn (BatchNormalization)   │ (None, 7, 7, 1024)          │           4,096 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_12_relu (ReLU)               │ (None, 7, 7, 1024)          │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_13 (DepthwiseConv2D)         │ (None, 7, 7, 1024)          │           9,216 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_13_bn (BatchNormalization)   │ (None, 7, 7, 1024)          │           4,096 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_dw_13_relu (ReLU)               │ (None, 7, 7, 1024)          │               0 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_13 (Conv2D)                  │ (None, 7, 7, 1024)          │       1,048,576 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_13_bn (BatchNormalization)   │ (None, 7, 7, 1024)          │           4,096 │
├--------------------------------------┼-----------------------------┼-----------------┤
│ conv_pw_13_relu (ReLU)               │ (None, 7, 7, 1024)          │               0 │
└--------------------------------------┴-----------------------------┴-----------------┘
 Total params: 3,228,864 (12.32 MB)
 Trainable params: 3,206,976 (12.23 MB)
 Non-trainable params: 21,888 (85.50 KB)

[링크 : https://kau-deeperent.tistory.com/m/59]

 

# from keras.preprocessing.image import ImageDataGenerator #  에러났음
from tensorflow.keras.preprocessing.image import ImageDataGenerator

[링크 : https://sugyeong0425.tistory.com/151]

 

voc2012 데이터셋설명

[링크 : https://bo-10000.tistory.com/38]

[링크 : https://velog.io/@kyungmin1029/CV-OpenCV]

 

2024.8 월 이니 한번 시도해볼 만할 듯?

[링크 : https://velog.io/@choonsik_mom/MobileNet-SSD-object-detector-커스텀-데이터-학습하기-m3j5d0xh]

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

mean Average Precision(mAP)  (0) 2025.09.05
내장 그래픽으로 ROCm?  (0) 2025.09.05
ai 모델들 조사  (0) 2025.09.04
NMS, soft-NMS  (0) 2024.01.15
VGG-16 / VGG-19  (0) 2024.01.11
Posted by 구차니
프로그램 사용/iperf2025. 9. 15. 12:45

라즈베리 4 가 성능이 좋아도..

GbE UDP 테스트 하니 2세대 노트북에서 80% 쳐먹으시고

13세대에서도 25~30% 쳐드시는데

 

이걸 어떻게 해야하나 찾아보는데

이전에 이런 옵션으로 zerocpy 해서 부하를 줄여보려고 했는데

$ iperf3 -c localhost -u -f m -b 1000M -Z

 

pid 작은게 받는 쪽 pid 큰게 보내는 쪽. 대충 17.8%(클라) -> 10.9% (서버)

1988904 minimonk   20   0    8316   3968   3456 S  17.8   0.0   0:01.01 iperf3                                                                                                                       
1988889 minimonk   20   0    8316   3840   3328 S  10.9   0.0   0:01.60 iperf3   

 

-l 64k는 왜 안되는지 모르겠고 63k는 먹는데

$ iperf3 -c localhost -u -f m -b 1000M -Z -l 63K

 

pid 작은게 받는 쪽 pid 큰게 보내는 쪽. 대충 14.7%(클라) -> 8.8% (서버)

1988975 minimonk   20   0    8348   3968   3456 S  14.7   0.0   0:00.61 iperf3                                                                                                                        
1988889 minimonk   20   0    8348   3840   3328 S   8.8   0.0   0:03.46 iperf3   

 

이렇게 옵션 주고 하니 라즈베리 4에서도 UDP로 GbE 잘 뽑아낸다. 휴..

[링크 : https://serverfault.com/questions/813413/how-to-set-the-udp-packet-size-with-iperf3]

'프로그램 사용 > iperf' 카테고리의 다른 글

iperf3 jumbo packet?  (0) 2025.02.15
iperf 파일로 바로바로 떨궈서 tail로 보기  (0) 2025.02.10
iperf3  (0) 2023.07.28
iperf udp 테스트  (0) 2022.03.14
iperf로 100M 랜 / IEEE1394 대역폭 측정  (2) 2011.12.07
Posted by 구차니

2021년 시작해서 2022년 이후로는 수정이 없는 프로젝트

그래도 보면서 할 수 있으면 괜찮아 보이는데, 한번 설치해서 해봐야겠다

[링크 : https://github.com/patrickelectric/GstPipelineStudio?tab=readme-ov-file]

[링크 : https://blogs.igalia.com/scerveau/introducing-gstpipelinestudio-0-3-4/]

'프로그램 사용 > gstreamer' 카테고리의 다른 글

gstreamer 기초  (0) 2025.08.27
gstreamer pipeline  (0) 2025.08.22
gstreamer tee 예제  (0) 2025.08.21
gstreamer capsfilter  (0) 2025.08.21
gstreamer parse_launch  (0) 2024.01.11
Posted by 구차니
프로그램 사용/rtl-sdr2025. 9. 11. 10:47

hackrf 라서 rx tx 다 되는 sdr이 있는데

그걸 포터블 버전으로 만들어 주는 add-on이 알리에서 보이길래 검색

 

원본(?)

[링크 : https://github.com/sharebrained/portapack-hackrf/]

  [링크 : https://sharebrained.com/portapack/]

 

portapack 을 fork

[링크  : https://github.com/furrtek/portapack-havoc/]

 

havoc을 fork. 그러나 portapack에서 정식으로 인정?

[링크 : https://github.com/portapack-mayhem/mayhem-firmware]

'프로그램 사용 > rtl-sdr' 카테고리의 다른 글

gnuradio LoRa  (0) 2025.09.11
gnuradio dvb-t  (0) 2025.04.02
openwebrx  (0) 2024.09.06
gnu radio를 이용한 커스텀 gqrx 만들기  (0) 2024.09.06
pulseaudio error : access denied  (0) 2024.08.26
Posted by 구차니
프로그램 사용/rtl-sdr2025. 9. 11. 10:31

gnu radio에서 lora의 패킷을 볼 수 있으려나?

 

Functionalities
Sending and receiving LoRa packets between USRP-USRP and USRP-commercial LoRa transceiver (tested with RFM95, SX1276, SX1262).

Parameters available:

Spreading factors: 5-12*
Coding rates: 0-4
Implicit and explicit header mode
Payload length: 1-255 bytes
Sync word selection (network ID)
Verification of payload CRC
Verification of explicit header checksum
Low datarate optimisation mode
Utilisation of soft-decision decoding for improved performances
* Spreading factors 5 and 6 are not compatible with SX126x.

[링크 : https://github.com/tapparelj/gr-lora_sdr]

 

Hardware support
The following LoRa modules and SDRs were tested and work with gr-lora:

Transmitters: Pycom LoPy, Dragino LoRa Raspberry Pi HAT, Adafruit Feather 32u4, Microchip RN 2483 (custom board), SX1276(Custom Board with STM32 Support) Receivers: HackRF One, USRP B201, RTL-SDR, LimeSDR(LMS7002M)-LimeSDR USB.

[링크 : https://github.com/rpp0/gr-lora]

 

'프로그램 사용 > rtl-sdr' 카테고리의 다른 글

hackrf portapack (portable)  (0) 2025.09.11
gnuradio dvb-t  (0) 2025.04.02
openwebrx  (0) 2024.09.06
gnu radio를 이용한 커스텀 gqrx 만들기  (0) 2024.09.06
pulseaudio error : access denied  (0) 2024.08.26
Posted by 구차니

ssh를 통해 iperf3 -s 옵션으로 실행 했는데

결과 내용이 ssh 터미널을 통해 나오지 않아서 3 ai들에게 물어보니

cluade가 알려줌. 그 와중에 gemini는 도움이 안되고 chatGPT는 파일로 떨구라고 알려줌.. (야이 -_-)

 

아무튼 -t 라는 옵션을 주면 잘 나온다. 신기하네..

     -T      Disable pseudo-terminal allocation.

     -t      Force pseudo-terminal allocation.  This can be used to execute
             arbitrary screen-based programs on a remote machine, which can be
             very useful, e.g. when implementing menu services.  Multiple -t
             options force tty allocation, even if ssh has no local tty.

 

iperf3 가 취소되어 종료되고 나서 한번에 iperf3 서버쪽 결과가 나옴. 일종의 버퍼링 상태인가..

ssh localhost "iperf3 -s"  
  iperf3 -c localhost
Connecting to host localhost, port 5201
[  5] local 127.0.0.1 port 43416 connected to 127.0.0.1 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec  5.94 GBytes  51.0 Gbits/sec    0   1.31 MBytes       
[  5]   1.00-2.00   sec  6.09 GBytes  52.3 Gbits/sec    0   1.31 MBytes       
[  5]   2.00-3.00   sec  5.79 GBytes  49.7 Gbits/sec    0   1.31 MBytes       
^C[  5]   3.00-3.37   sec  2.26 GBytes  51.8 Gbits/sec    0   1.31 MBytes 
iperf3: the client has terminated
-----------------------------------------------------------
Server listening on 5201
-----------------------------------------------------------
Accepted connection from 127.0.0.1, port 43412
[  5] local 127.0.0.1 port 5201 connected to 127.0.0.1 port 43416
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-1.00   sec  5.72 GBytes  49.1 Gbits/sec                  
[  5]   1.00-2.00   sec  6.09 GBytes  52.3 Gbits/sec                  
[  5]   2.00-3.00   sec  5.81 GBytes  49.9 Gbits/sec                  
[  5]   2.00-3.00   sec  5.81 GBytes  49.9 Gbits/sec                  
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-3.00   sec  20.1 GBytes  57.5 Gbits/sec                  receiver
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-3.37   sec  20.1 GBytes  51.1 Gbits/sec    0             sender
[  5]   0.00-3.37   sec  0.00 Bytes  0.00 bits/sec                  receiver
iperf3: interrupt - the client has terminated

 

그 와중에 iperf3 -s 를 실행한 ssh를 종료하면 PPID 1번으로 붙어 버린다. 야이 -_-

마치 -D / --daemon 옵션을 주고 한 것 같아지냐

$ ps -ef | grep iperf3
falinux   811482       1  2 12:12 ?        00:00:02 iperf3 -s

 

딱이네.. 머지? 터미널이 없으면 자동으로 daemon 모드로 작동하나?

$ iperf3 -D -s
$ ps -ef | grep iperf3
user   811482       1  1 12:12 ?        00:00:02 iperf3 -s

 

아무튼 대망의(?) -t 옵션. 잘 된다.

ssh -t localhost "iperf3 -s"
-----------------------------------------------------------
Server listening on 5201
-----------------------------------------------------------
 
Accepted connection from 127.0.0.1, port 60822
[  5] local 127.0.0.1 port 5201 connected to 127.0.0.1 port 60830
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-1.00   sec  5.48 GBytes  47.0 Gbits/sec                  
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-1.00   sec  5.48 GBytes  47.0 Gbits/sec                  
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate
[  5]   0.00-1.00   sec  7.60 GBytes  65.3 Gbits/sec                  receiver
iperf3: the client has terminated
-----------------------------------------------------------
Server listening on 5201
-----------------------------------------------------------
iperf3 -c localhost
Connecting to host localhost, port 5201
[  5] local 127.0.0.1 port 60830 connected to 127.0.0.1 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec  5.70 GBytes  49.0 Gbits/sec    0   1.25 MBytes       
^C[  5]   1.00-1.32   sec  1.90 GBytes  50.5 Gbits/sec    0   1.25 MBytes       
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-1.32   sec  7.60 GBytes  49.4 Gbits/sec    0             sender
[  5]   0.00-1.32   sec  0.00 Bytes  0.00 bits/sec                  receiver
iperf3: interrupt - the client has terminated

[링크 : https://stackoverflow.com/questions/42505339/why-use-t-with-ssh]

'프로그램 사용 > ssh scp sftp' 카테고리의 다른 글

ssh-copy-id  (0) 2025.04.18
ssh socks proxy  (0) 2024.07.22
ssh ecdsa 미지원(ubuntu 22.04)  (0) 2023.05.30
ubuntu ssh x11 forwarding시 gnome 화면 끌어오기  (0) 2022.07.11
ssh 슈도 터미널 실행  (0) 2022.04.25
Posted by 구차니

mobivius 가 있긴한데.. 해봐? ㅋㅋㅋ

 

Getting Started: Ubuntu-PPA Install
Install via PPA repository (Ubuntu)
The nnstreamer releases are at a PPA repository. In order to install it, use:

$ sudo apt-add-repository ppa:nnstreamer
$ sudo apt install nnstreamer

Additional plugins available
nnstreamer-caffe2 : Allows to use caffe2 models in a pipeline. (From pytorch 1.3.1 by default)
nnstreamer-cpp : Allows to use C++ classes as filters of a pipeline.
nnstreamer-cpp-dev : Required to build C++ class-filters.
nnstreamer-dev : Required to build C function-filters and to build your own nnstreamer plugins.
nnstreamer-edgetpu : Allows to use edge-TPU in a pipeline.
nnstreamer-flatbuf : Allows to convert-from and decode-to flatbuf streams.
nnstreamer-misc: Provides additional gstreamer plugins for nnstreamer pipelines. Included plugins: join.
nnstreamer-openvino : Allows to use OpenVINO (Intel), enabling Movidius-X.
nnstreamer-protobuf : Allows to convert-from and decode-to protobuf streams.
nnstreamer-python2 : Allows to use python2 classes as filters of a pipeline.
nnstreamer-python3 : Allows to use python3 classes as filters of a pipeline.
nnstreamer-pytorch : Allows to use Pytorch models in a pipeline. (From pytorch 1.3.1 by default)
nnstreamer-tensorflow : Allows to use TensorFlow models in a pipeline. (From tensorflow 1.13.1 by default)
nnstreamer-tensorflow-lite : Allows to use TensorFlow-lite models in a pipeline. (From tensorflow 1.13.1 by default)

[링크 : https://nnstreamer.github.io/getting-started-ubuntu-ppa.html]

 

대행으로 하나 살거 알리에서 x4 x1 하나씩 사도 되겠네?!

[링크 : https://ko.aliexpress.com/item/1005005293216124.html]

[링크 : http://itempage3.auction.co.kr/DetailView.aspx?itemno=D855895973]

'프로그램 사용 > intel ncs2' 카테고리의 다른 글

movidius MyriadX * 2  (1) 2025.01.08
innodisk egpa-i201-c1 Movidius Myriad X  (0) 2025.01.06
openvino myriad  (2) 2025.01.04
intel NCS2 ubuntu 설치?  (0) 2020.10.21
intel ncs2 설치  (0) 2020.10.21
Posted by 구차니

claude 에 gemini를 넣어서 하는건데 한번 시도해봐야겠다.

 

[링크 : https://toyourlight.tistory.com/152]

[링크 : https://apidog.com/kr/blog/gemini-mcp-claude-code-kr/]

'프로그램 사용 > MCP ai' 카테고리의 다른 글

gemini + blender / freecad token  (0) 2025.09.02
csm.ai  (0) 2025.09.01
gemini + ubuntu + uvx 등등등.. 뻘기록  (0) 2025.09.01
claude desktop  (0) 2025.08.31
Posted by 구차니

eIQ에서 학습하는데 train mean Average Precision 라고 써있어서 먼가 했는데

학습시에 얼마나 잘 배우고 있냐 라는 지표중에 하나라고 한다.

ROI가 얼마나 정확하게 모든 이미지에 대해서 측정하고 평균내면 그게 mAP 라고

 

[링크 : https://ctkim.tistory.com/entry/mAPMean-Average-Precision-정리]

[링크 : https://wikidocs.net/162466]

[링크 : https://littlefoxdiary.tistory.com/126]

 

그런데 학습시키면서 0.2 정도에서 수렴을 하면서 학습이 중단되는데 머가 잘못설정되서 그런걸까?

몇개글을 찾아봐도 eIQ에서 설정 가능한 항목들이 아닌것 같은데

python으로 직접 학습시켜봐야하나...

[링크 : https://github.com/ultralytics/ultralytics/issues/10226]

[링크 : https://stackoverflow.com/questions/78558728/yolo-training-with-low-precision-and-low-map]

[링크 : https://stackoverflow.com/questions/48595240/map-decreasing-with-training-tensorflow-object-detection-ssd]

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

mobilenet 학습시키기 with keras, tensorflow  (0) 2025.09.15
내장 그래픽으로 ROCm?  (0) 2025.09.05
ai 모델들 조사  (0) 2025.09.04
NMS, soft-NMS  (0) 2024.01.15
VGG-16 / VGG-19  (0) 2024.01.11
Posted by 구차니

tensorflow 보면 대개 nvidia만 쓰게 되어있는데, 어떻게 tensorflow에서 AMD 쓸수 있대서 찾아보는 중

[링크 : https://yhu0409.tistory.com/14]

 

nartmada
on Mar 22, 2024
Collaborator
Hi @CardLin, unfortunately 5700G APU is not a supported HW and the workaround environment flags will have performance impact. Sorry, there will be no fix in future ROCm release for this Cezanne APU issue. Closing the ticket.

[링크 : https://github.com/ROCm/ROCm/issues/2964]

 

AMD "Vega" Architecture Gets No More ROCm Updates After Release 5.6
by btarunr Jul 3rd, 2023 14:55 Discuss (42 Comments)

[링크 : https://www.techpowerup.com/310764/amd-vega-architecture-gets-no-more-rocm-updates-after-release-5-6]

 

우분투에서 ROCm 지원하다가 vega 에 대해서는 추가 지원이 없다고 한다.

현재 최신이 6.4.3인데 5.6까지 밖에 지원안한다라..(혹은 더이상의 버그 픽스만 없다면 쓸수는 있다는건가?)

[링크 : https://rocm.docs.amd.com/en/latest/release/versions.html]

 

그럼.. 이걸 해보려면 노트북을 밀어야겠...네?!

윈도우 11도 마음에 안드는데 이 기회에?!?! ㅋㅋ

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

mobilenet 학습시키기 with keras, tensorflow  (0) 2025.09.15
mean Average Precision(mAP)  (0) 2025.09.05
ai 모델들 조사  (0) 2025.09.04
NMS, soft-NMS  (0) 2024.01.15
VGG-16 / VGG-19  (0) 2024.01.11
Posted by 구차니