'2021/01/08'에 해당되는 글 9건

  1. 2021.01.08 제노블레이드 크로니클스 de 엔딩
  2. 2021.01.08 darknet openmp 빌드
  3. 2021.01.08 i.mx6quad용 gcc 옵션
  4. 2021.01.08 darknet on rpi3
  5. 2021.01.08 yolo lite
  6. 2021.01.08 SSDnnn (Single Shot Detector)
  7. 2021.01.08 segmentation fault, bus error
  8. 2021.01.08 linux ip 와 gateway 설정
  9. 2021.01.08 orange pi r1+

100시간은 족히 한듯

아무튼 그 와중에 제노블레이드 크로니클스2 살려고 기웃대고 있고

 

DLC라고 해야하나? "이어지는 미래"도 해야하는데

시작해보니 60렙부터 시작하는군 ㅋ

Posted by 구차니

댓글을 달아 주세요

프로그램 사용/yolo2021. 1. 8. 18:01

위는 오리지널 darknet을 아무런 옵션없이 라즈베리에서 빌드한 결과

$ ldd darknet
        linux-vdso.so.1 (0x7efe1000)
        /usr/lib/arm-linux-gnueabihf/libarmmem-${PLATFORM}.so => /usr/lib/arm-linux-gnueabihf/libarmmem-v7l.so (0x76f54000)
        libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76eb6000)
        libpthread.so.0 => /lib/arm-linux-gnueabihf/libpthread.so.0 (0x76e8c000)
        libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76d3e000)
        /lib/ld-linux-armhf.so.3 (0x76f69000)

 

아래는 darknet AlexeyAB 버전을 neon과 openmp 설정해서 빌드한 결과

$ ldd darknet
        linux-vdso.so.1 (0x7eefc000)
        /usr/lib/arm-linux-gnueabihf/libarmmem-${PLATFORM}.so => /usr/lib/arm-linux-gnueabihf/libarmmem-v7l.so (0x76f79000)
        libgomp.so.1 => /lib/arm-linux-gnueabihf/libgomp.so.1 (0x76f25000)
        libstdc++.so.6 => /lib/arm-linux-gnueabihf/libstdc++.so.6 (0x76dde000)
        libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76d5c000)
        libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0x76d2f000)
        libpthread.so.0 => /lib/arm-linux-gnueabihf/libpthread.so.0 (0x76d05000)
        libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76bb7000)
        libdl.so.2 => /lib/arm-linux-gnueabihf/libdl.so.2 (0x76ba4000)
        /lib/ld-linux-armhf.so.3 (0x76f8e000)

 

 

+

cpu only = 30.13sec

$ ./tiny.sh
 GPU isn't used
 OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
   layer   filters  size/strd(dil)      input                output
   0 conv     16       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  16 0.150 BF
   1 max                2x 2/ 2    416 x 416 x  16 ->  208 x 208 x  16 0.003 BF
   2 conv     32       3 x 3/ 1    208 x 208 x  16 ->  208 x 208 x  32 0.399 BF
   3 max                2x 2/ 2    208 x 208 x  32 ->  104 x 104 x  32 0.001 BF
   4 conv     64       3 x 3/ 1    104 x 104 x  32 ->  104 x 104 x  64 0.399 BF
   5 max                2x 2/ 2    104 x 104 x  64 ->   52 x  52 x  64 0.001 BF
   6 conv    128       3 x 3/ 1     52 x  52 x  64 ->   52 x  52 x 128 0.399 BF
   7 max                2x 2/ 2     52 x  52 x 128 ->   26 x  26 x 128 0.000 BF
   8 conv    256       3 x 3/ 1     26 x  26 x 128 ->   26 x  26 x 256 0.399 BF
   9 max                2x 2/ 2     26 x  26 x 256 ->   13 x  13 x 256 0.000 BF
  10 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  11 max                2x 2/ 1     13 x  13 x 512 ->   13 x  13 x 512 0.000 BF
  12 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  13 conv    256       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 256 0.089 BF
  14 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  15 conv    255       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 255 0.044 BF
  16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  17 route  13                                     ->   13 x  13 x 256
  18 conv    128       1 x 1/ 1     13 x  13 x 256 ->   13 x  13 x 128 0.011 BF
  19 upsample                 2x    13 x  13 x 128 ->   26 x  26 x 128
  20 route  19 8                                   ->   26 x  26 x 384
  21 conv    256       3 x 3/ 1     26 x  26 x 384 ->   26 x  26 x 256 1.196 BF
  22 conv    255       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 255 0.088 BF
  23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
 Detection layer: 16 - type = 28
 Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 30133.750000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead

 

neon = 10.718 sec

$ ./tiny.sh
 GPU isn't used
 OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
   layer   filters  size/strd(dil)      input                output
   0 conv     16       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  16 0.150 BF
   1 max                2x 2/ 2    416 x 416 x  16 ->  208 x 208 x  16 0.003 BF
   2 conv     32       3 x 3/ 1    208 x 208 x  16 ->  208 x 208 x  32 0.399 BF
   3 max                2x 2/ 2    208 x 208 x  32 ->  104 x 104 x  32 0.001 BF
   4 conv     64       3 x 3/ 1    104 x 104 x  32 ->  104 x 104 x  64 0.399 BF
   5 max                2x 2/ 2    104 x 104 x  64 ->   52 x  52 x  64 0.001 BF
   6 conv    128       3 x 3/ 1     52 x  52 x  64 ->   52 x  52 x 128 0.399 BF
   7 max                2x 2/ 2     52 x  52 x 128 ->   26 x  26 x 128 0.000 BF
   8 conv    256       3 x 3/ 1     26 x  26 x 128 ->   26 x  26 x 256 0.399 BF
   9 max                2x 2/ 2     26 x  26 x 256 ->   13 x  13 x 256 0.000 BF
  10 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  11 max                2x 2/ 1     13 x  13 x 512 ->   13 x  13 x 512 0.000 BF
  12 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  13 conv    256       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 256 0.089 BF
  14 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  15 conv    255       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 255 0.044 BF
  16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  17 route  13                                     ->   13 x  13 x 256
  18 conv    128       1 x 1/ 1     13 x  13 x 256 ->   13 x  13 x 128 0.011 BF
  19 upsample                 2x    13 x  13 x 128 ->   26 x  26 x 128
  20 route  19 8                                   ->   26 x  26 x 384
  21 conv    256       3 x 3/ 1     26 x  26 x 384 ->   26 x  26 x 256 1.196 BF
  22 conv    255       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 255 0.088 BF
  23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
 Detection layer: 16 - type = 28
 Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 10718.416000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead

 

openmp = 8.686 sec

$ ./tiny.sh
 GPU isn't used
 OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
   layer   filters  size/strd(dil)      input                output
   0 conv     16       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  16 0.150 BF
   1 max                2x 2/ 2    416 x 416 x  16 ->  208 x 208 x  16 0.003 BF
   2 conv     32       3 x 3/ 1    208 x 208 x  16 ->  208 x 208 x  32 0.399 BF
   3 max                2x 2/ 2    208 x 208 x  32 ->  104 x 104 x  32 0.001 BF
   4 conv     64       3 x 3/ 1    104 x 104 x  32 ->  104 x 104 x  64 0.399 BF
   5 max                2x 2/ 2    104 x 104 x  64 ->   52 x  52 x  64 0.001 BF
   6 conv    128       3 x 3/ 1     52 x  52 x  64 ->   52 x  52 x 128 0.399 BF
   7 max                2x 2/ 2     52 x  52 x 128 ->   26 x  26 x 128 0.000 BF
   8 conv    256       3 x 3/ 1     26 x  26 x 128 ->   26 x  26 x 256 0.399 BF
   9 max                2x 2/ 2     26 x  26 x 256 ->   13 x  13 x 256 0.000 BF
  10 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  11 max                2x 2/ 1     13 x  13 x 512 ->   13 x  13 x 512 0.000 BF
  12 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  13 conv    256       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 256 0.089 BF
  14 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  15 conv    255       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 255 0.044 BF
  16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  17 route  13                                     ->   13 x  13 x 256
  18 conv    128       1 x 1/ 1     13 x  13 x 256 ->   13 x  13 x 128 0.011 BF
  19 upsample                 2x    13 x  13 x 128 ->   26 x  26 x 128
  20 route  19 8                                   ->   26 x  26 x 384
  21 conv    256       3 x 3/ 1     26 x  26 x 384 ->   26 x  26 x 256 1.196 BF
  22 conv    255       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 255 0.088 BF
  23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
 Detection layer: 16 - type = 28
 Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 8686.237000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead

 

 

openmp + neon = 4.449 sec

$ ./tiny.sh
 GPU isn't used
 OpenCV isn't used - data augmentation will be slow
mini_batch = 1, batch = 1, time_steps = 1, train = 0
   layer   filters  size/strd(dil)      input                output
   0 conv     16       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  16 0.150 BF
   1 max                2x 2/ 2    416 x 416 x  16 ->  208 x 208 x  16 0.003 BF
   2 conv     32       3 x 3/ 1    208 x 208 x  16 ->  208 x 208 x  32 0.399 BF
   3 max                2x 2/ 2    208 x 208 x  32 ->  104 x 104 x  32 0.001 BF
   4 conv     64       3 x 3/ 1    104 x 104 x  32 ->  104 x 104 x  64 0.399 BF
   5 max                2x 2/ 2    104 x 104 x  64 ->   52 x  52 x  64 0.001 BF
   6 conv    128       3 x 3/ 1     52 x  52 x  64 ->   52 x  52 x 128 0.399 BF
   7 max                2x 2/ 2     52 x  52 x 128 ->   26 x  26 x 128 0.000 BF
   8 conv    256       3 x 3/ 1     26 x  26 x 128 ->   26 x  26 x 256 0.399 BF
   9 max                2x 2/ 2     26 x  26 x 256 ->   13 x  13 x 256 0.000 BF
  10 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  11 max                2x 2/ 1     13 x  13 x 512 ->   13 x  13 x 512 0.000 BF
  12 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  13 conv    256       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 256 0.089 BF
  14 conv    512       3 x 3/ 1     13 x  13 x 256 ->   13 x  13 x 512 0.399 BF
  15 conv    255       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 255 0.044 BF
  16 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  17 route  13                                     ->   13 x  13 x 256
  18 conv    128       1 x 1/ 1     13 x  13 x 256 ->   13 x  13 x 128 0.011 BF
  19 upsample                 2x    13 x  13 x 128 ->   26 x  26 x 128
  20 route  19 8                                   ->   26 x  26 x 384
  21 conv    256       3 x 3/ 1     26 x  26 x 384 ->   26 x  26 x 256 1.196 BF
  22 conv    255       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 255 0.088 BF
  23 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 5.571
avg_outputs = 341534
Loading weights from ../yolov3-tiny.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64)
Done! Loaded 24 layers from weights-file
 Detection layer: 16 - type = 28
 Detection layer: 23 - type = 28
data/dog.jpg: Predicted in 4449.888000 milli-seconds.
dog: 81%
bicycle: 38%
car: 71%
truck: 42%
truck: 62%
car: 40%
Not compiled with OpenCV, saving to predictions.png instead

 

'프로그램 사용 > yolo' 카테고리의 다른 글

CNN과 RNN  (0) 2021.01.09
darknet과 darknetab  (0) 2021.01.09
darknet openmp 빌드  (0) 2021.01.08
darknet on rpi3  (0) 2021.01.08
yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
Posted by 구차니

댓글을 달아 주세요

embeded2021. 1. 8. 17:59

아래의 옵션을 추천해서 적용해 보았는데

-mthumb -O3 -march=armv7-a -mcpu=cortex-a9 -mtune=cortex-a9 -mfpu=neon -mvectorize-with-neon-quad -mfloat-abi=softfp

[링크 : https://stackoverflow.com/questions/14962447/gcc-options-for-a-freescale-imx6q-arm-processor]

[링크 : https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html]

 

에러가 나서 mfloat-abi=softfp 에서 hard로 변경

In file included from /usr/include/features.h:448,
                 from /usr/include/arm-linux-gnueabihf/bits/libc-header-start.h:33,
                 from /usr/include/stdlib.h:25,
                 from include/darknet.h:12,
                 from ./src/activations.h:3,
                 from ./src/gemm.h:3,
                 from ./src/gemm.c:1:
/usr/include/arm-linux-gnueabihf/gnu/stubs.h:7:11: fatal error: gnu/stubs-soft.h: No such file or directory
 # include <gnu/stubs-soft.h>
           ^~~~~~~~~~~~~~~~~~
compilation terminated.

[링크 : https://stackoverflow.com/questions/49139125/fatal-error-gnu-stubs-soft-h-no-such-file-or-directory]

 

아무튼 빌드는 되지만 아래와 같은 경고가 뜬다. march와 mcpu가 충돌난다라.. 어느걸 살려야 할까?

cc1: warning: switch -mcpu=cortex-a9 conflicts with -march=armv7-a switch

 

 

+

2021.01.12

[링크 : https://developer.arm.com/documentation/dui0472/i/using-the-neon-vectorizing-compiler/generating-neon-instructions-from-c-or-c---code]

 

'embeded' 카테고리의 다른 글

arm-none-eabi는 -pthread 미지원  (0) 2021.01.11
i.mx6quad용 gcc 옵션  (0) 2021.01.08
orange pi r1+  (0) 2021.01.08
간만에 부품 지름  (2) 2020.03.04
solidrun CuBox-i2w  (0) 2019.03.10
udoo 보드  (0) 2018.11.29
Posted by 구차니

댓글을 달아 주세요

프로그램 사용/yolo2021. 1. 8. 16:39

원인 불명으로 BUS error나 Segmentation fault가 떠서 찾아보니

소스를 수정한 버전이 있다고 한다.

돌아는 가는데.... (이하 생략)

 

[링크 : https://j-remind.tistory.com/53]

[링크 : https://github.com/AlexeyAB/darknet]

 

설마 endian 문제?

[링크 : https://github.com/pjreddie/darknet/issues/823]

'프로그램 사용 > yolo' 카테고리의 다른 글

darknet과 darknetab  (0) 2021.01.09
darknet openmp 빌드  (0) 2021.01.08
darknet on rpi3  (0) 2021.01.08
yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
CNN - YOLO  (0) 2021.01.07
Posted by 구차니

댓글을 달아 주세요

프로그램 사용/yolo2021. 1. 8. 16:05

YOLOv2-tiny 의 web implementation 이라는데 웹 implementation이 머지?

 

[링크 : https://reu2018dl.github.io/]

[링크 : https://github.com/reu2018DL/YOLO-LITE]

[링크 : https://arxiv.org/pdf/1811.05588.pdf]

 

 

+

MS COCO 2014 and PASCAL VOC 2007 + 2012

 

pascal voc(Visual Object Classes)

[링크 : http://host.robots.ox.ac.uk/pascal/VOC/]

[링크 : https://ndb796.tistory.com/500]

 

MS COCO

COCO랑은 다른가?

[링크 : https://arxiv.org/pdf/1405.0312.pdf]

[링크 : https://chacha95.github.io/2020-02-27-Object-Detection4/]

[링크 : https://cocodataset.org/#home]

 

AP - Average Precision

mAP (mean AP)

[링크 : https://mezzaninex.tistory.com/entry/AI-COCO-Dataset-mAPmean-Average-Precision]

'프로그램 사용 > yolo' 카테고리의 다른 글

darknet openmp 빌드  (0) 2021.01.08
darknet on rpi3  (0) 2021.01.08
yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
CNN - YOLO  (0) 2021.01.07
yolo BFLOPs  (0) 2020.10.21
Posted by 구차니

댓글을 달아 주세요

프로그램 사용/yolo2021. 1. 8. 16:01

SSD 도 모델이군..

 

[링크 : https://pjreddie.com/darknet/yolo/]

[링크 : https://junjiwon1031.github.io/2017/09/08/Single-Shot-Multibox-Detector.html]

'프로그램 사용 > yolo' 카테고리의 다른 글

darknet on rpi3  (0) 2021.01.08
yolo lite  (0) 2021.01.08
SSDnnn (Single Shot Detector)  (0) 2021.01.08
CNN - YOLO  (0) 2021.01.07
yolo BFLOPs  (0) 2020.10.21
yolo3 on ubuntu 18.04  (0) 2020.10.20
Posted by 구차니

댓글을 달아 주세요

Linux2021. 1. 8. 15:58

segmentation fault는 주소 영역은 존재하는데 접근해서는 안되는 주소를 간거라고 한다면

bus error는 물리적 주소조차도 존재하지 않는 영역을 갈경우 발생하는건가?

 

A Bus Errors triggers a process-level exception,notifying an  operating system(OS) that a process is trying to access memory that the CPU cannot physically address which in UNIX translates into a “SIGBUS” signal, which if not caught, will terminate the current process.

[링크 : https://learntechway.com/difference-between-segmentation-fault-and-bus-error/]

'Linux' 카테고리의 다른 글

linux 프레임 버퍼에 이미지, 동영상 재생하기  (0) 2021.01.21
sit1 인터페이스  (0) 2021.01.20
segmentation fault, bus error  (0) 2021.01.08
linux ip 와 gateway 설정  (0) 2021.01.08
udev  (0) 2021.01.05
uio - userspace io  (0) 2021.01.05
Posted by 구차니

댓글을 달아 주세요

Linux2021. 1. 8. 12:25

잘 외워두고 써야겠군 

ifconfig eth0 192.168.1.123 netmask 255.255.255.0 up
route add default gw 192.168.1.1

[링크 : https://southlife.tistory.com/82]

'Linux' 카테고리의 다른 글

sit1 인터페이스  (0) 2021.01.20
segmentation fault, bus error  (0) 2021.01.08
linux ip 와 gateway 설정  (0) 2021.01.08
udev  (0) 2021.01.05
uio - userspace io  (0) 2021.01.05
파일이 존재하는데 실행하려고 하면 없다고 에러 뜰 경우  (0) 2020.12.16
Posted by 구차니

댓글을 달아 주세요

embeded2021. 1. 8. 11:23

시리얼이 안된다고 해서 비싼 장난감으로 찍어보니

655ns .. 헐?

역으로 계산해보면 대충 1.6Mbps 나오는 것 같아서 찾아보는데

RK3328은 기본값이 1.5Mbps(1500000n8)로 셋팅된다고 하는데 동일 보드도 아니고

해당 보드 홈페이지 쥐잡듯이 뒤져도 기본값 이야기가 안나온다 -_-

 

아무튼 3.3V TTL은 맞고 115kbps가 아니라 1.5Mbps 라는게 문제인데

이거 되는 TTL-USB가 얼마나 있으려나?

 

 

[링크 : http://www.orangepi.org/Orange%20Pi%20R1%20Plus/]

[링크 : http://wiki.t-firefly.com/ROC-RK3328-CC/debug.html]

[링크 : https://forum.radxa.com/t/serial-debug-and-1500000-bps-issue/1390/7]

[링크 : https://forum.pine64.org/showthread.php?tid=7379]

'embeded' 카테고리의 다른 글

arm-none-eabi는 -pthread 미지원  (0) 2021.01.11
i.mx6quad용 gcc 옵션  (0) 2021.01.08
orange pi r1+  (0) 2021.01.08
간만에 부품 지름  (2) 2020.03.04
solidrun CuBox-i2w  (0) 2019.03.10
udoo 보드  (0) 2018.11.29
Posted by 구차니

댓글을 달아 주세요