원본 darknet은 성능에 영향을 줄게 3개 밖에 없는데

GPU=0
CUDNN=0
OPENCV=0
OPENMP=0

 

alexeyAB의 darknet은 gpu, cudnn, avx, openmp 4가지 이다.

GPU=0
CUDNN=0
CUDNN_HALF=0
OPENCV=0
AVX=0
OPENMP=0
LIBSO=0
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

[링크 : https://github.com/AlexeyAB/darknet]

 

심심해서(?) i5-2세대도 있나 보는데 어라..? 있네?

[링크 : https://ark.intel.com/.../intel-core-i5-2500-processor-6m-cache-up-to-3-70-ghz.html]

[링크 : https://ark.intel.com/../intel-core-i5-2520m-processor-3m-cache-up-to-3-20-ghz.html]

 

근데 빌드해서 돌려보니 내꺼는 AVX일뿐이라 돌아가지 않는다 ㅠㅠ

AVX2는 하스웰 이후부터 지원한다고 하니.. 집에있는 내 실험용 컴퓨터로는 무리겠구나..

$ ./darknet detect cfg/yolov3.cfg ../yolov3.weights data/dog.jpg
 GPU isn't used 
 Used AVX 
 Not used FMA & AVX2 
 OpenCV isn't used - data augmentation will be slow 
명령어가 잘못됨 (core dumped)

 

alexeyAB 버전을 싱글 코어 / openmp 설정으로 돌리니 반정도 줄었다.

data/dog.jpg: Predicted in 11175.292000 milli-seconds.
data/dog.jpg: Predicted in 5974.575000 milli-seconds.

'프로그램 사용 > yolo_tensorflow' 카테고리의 다른 글

CNN convolution과 maxpool  (0) 2021.01.10
CNN과 RNN  (0) 2021.01.09
darknet openmp 빌드  (0) 2021.01.08
darknet on rpi3  (0) 2021.01.08
yolo lite  (0) 2021.01.08
Posted by 구차니